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Diseño Robusto Aplicado A La Experimentación Agrícola Y A
Procesos Agro-Industriales

Alphonse BIZIMANA

Colegio de Postgraduados, 2015

Proporcionamos una metodología para planear y llevar a cabo el diseño robusto y analizar los
datos obtenidos del experimento. Los métodos que presentamos son el enfoque de Taguchi
comúnmente conocido como diseño doble arreglo ortogonal, y el diseño arreglo combinado.

El enfoque de Taguchi consiste en un diseño ortogonal doble, uno para los factores de diseño
y otro para los factores de ruido.

El diseño arreglo combinado pone ambos tipos de factores en un diseño. Este diseño permite
el análisis de las interacciones entre los factores de diseño y de ruido, y reduce el número
de corridas requerido para llevar a cabo un experimento. El análisis de los datos obtenidos
a partir de este diseño consiste en ajustar un modelo de regresión en términos de factores
de diseño y factores de ruido. Desde el modelo ajustado, se obtienen dos super�cies de re-
spuesta, una super�cie para la media de la característica de calidad y otra para su varianza.

Los problemas de optimización se basan en el criterio del error cuadrático medio y la función
de deseabilidad.

Basado en la función de pérdida cuadrática, evaluamos el impacto económico del diseño ro-
busto para reducir el costo de producción.

Considerando las principales clases de posibles respuestas, estos son, el valor nominal es
mejor, entre más grande mejor y entre más pequeño mejor, proponemos una prueba estadís-
tica para comparaciones por pares de tratamientos con respecto a la razón señal-ruido.

Palabras clave: Diseño robusto, diseño doble arreglo ortogonal, diseño arreglo combinado,
metodología de super�cie de respuesta, error cuadrático medio, función de deseabilidad,
función de pérdida cuadrática, razón señal-ruido.
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Robust Design Applied to Agricultural Experimentation and
Agro-industrial Processes

Alphonse BIZIMANA

Colegio de Postgraduados, 2015

We provide a methodology for conducting robust design and analysing the data obtained
from the experiment. The methods we expose are the Taguchi approach commonly known
as double orthogonal array design or crossed array design, and the combined array design.

The Taguchi approach consists of a double orthogonal array design, one for the design factors
and another for the noise factors.

The combined array design puts both types of factors in one design. This design permits
the analysis of interactions between the design and noise factors, and reduces the number
of runs required to conduct an experiment. The analysis of data obtained from this design
consists of adjusting a regression model in terms of design factors and noise factors. From
the adjusted model, two response surfaces are obtained, one for the mean of the quality
characteristic and another for its variance.

The optimization problems are based on the mean square error criterion and desirability
function.

Based on quadratic loss function, we assess the economic impact of robust design in reducing
the production cost.

Considering the main classes of possible responses, these are the nominal-the-best, the larger-
the-better and the smaller-the-better, we propose a statistical test for pairwise comparisons
of treatments with regard to the signal-to-noise ratio.

Key words: Robust design, double orthogonal array design, combined array design, re-
sponse surface methodology, mean square error, desirability function, quadratic loss function,
signal-to-noise ratio.
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Chapter 1

Introduction

1.1 Background information

The use of designed experiments plays an important role in several �elds such as Economy,
Agro-industry and Medicine.

Since engineers and scientists have become increasingly aware of the bene�ts of using designed
experiments, there have been many new areas of application. One of the most important is
in robust design. Robust design methodology is a systematic e�ort to achieve insensitivity
to noise factors.

The assumption in robust designs is that there are two types of factors that a�ect the qual-
ity characteristic. These are the control factors and the uncontrollable or di�cult to control
factors. They are respectively referred to as design factors and noise factors.

Noise factors can be further divided into two categories: external noise factors and internal
noise factors. External noise factors are those sources of variability that come from outside
of the system. Examples of external noise factors are environmental factors that a system
is subject to, such as ambient temperature, ambient pressure and humidity. Internal noise
factors are essentially from the variations of control factors. Internal noise could include
deviations from the target values of control factors caused by manufacturing, assembly, and
deterioration.

While designing an experiment, it is frequently impossible or very di�cult or expensive to
control or eliminate sources of variation due to external noise factors. However, the experi-
menter has some control on setting the levels of internal noise factors during the design. The
goal of robust design is to enable the experimenter to choose the levels of the control factors
that optimize a de�ned response while minimizing the variation imposed on the process via
the noise factors (Timothy et al. (2000)).

Meng et al. (2010) state that robust design is mainly composed of three stages: robust system
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1.1. Background information

design, robust parameter design and robust tolerance design. Robust system design consists
of using physics, mathematics, experience and knowledge gained in a speci�c �eld to develop
and select the most appropriate conditions of the design. Once the con�guration of a system
is �nalised, the settings of the nominal levels and the corresponding tolerances need to be
determined. Robust parameter design aims at �nding the optimal settings of control factors
so that the system is insensitive or less sensitive to noise factors. Robust tolerance design is
a balancing process. It aims to �nd the optimal settings of tolerances of the control factors
so that the total cost of the system is minimal (Meng et al. (2010)).

The formalization of robust design was initiated by Genichi Taguchi. He introduced an
approach referred to as robust parameter design. His approach is based on classifying the
factors as either controllable or noise factors, and then �nding the settings for the control-
lable factors that minimize the variability transmitted to the response from the noise factors.
Taguchi proposed the use of a cross-product of two experimental designs, known as product
array design or double orthogonal array design (Montgomery (2001)). This consists of an
inner array containing the design factors and an outer array containing the noise factors.
For each combination of design factors, the same array of noise factors is run. The metrics
used by Taguchi for evaluating the robustness of a design are the Quadratic Loss Function
and the Signal-to-Noise Ratio.

Experimental strategy and design advocated by Taguchi have been criticized by various au-
thors. The main criticism is that the double array design involves a large amount of runs
and does not consider interactions between design and noise factors. Details of discussion
and criticism of Taguchi's approach can be found in Kunert et al. (2007) and Nair (1992).
However, Bisgaard (2000) opened the discussion and the investigation about interactions
between the design and noise factors.

As an alternative to the method proposed by Taguchi, other statisticians such as Wu and
Hamada (2009) have adopted the use of combined array design which contains controllable
and noise factors. This method permits the analysis of interactions between both kinds of
factors.

The designs commonly used in conducting double orthogonal array design or combined ar-
ray design are factorial and fractional factorial designs (Khuri and Mukhopadhyay (1997)).
Box and Jones (1992) have introduced the use of split-plot design for robust experimentation.

Response surface methodology is an excellent tool for analysing the data obtained from
combined array design. This is a collection of mathematical and statistical techniques that
are useful for modeling and analysing problems in which a response of interest depends on
several variables, and the objective is to optimize this response.

The statistical methodology underlying robust design, that has by now become the most
widely accepted, is the dual response surface methodology which estimates two surfaces, one

2



1.2. Objectives

for the mean and one for the variance of the quality characteristic (Giovagnoli and Romano
(2008)). A modi�cation has been introduced. This modi�cation is related to the division
of the noise factors within two groups. The �rst group consists of random factors and the
second is composed of the noise factors for which the levels are �xed. The experiment with
the computer is simulated. From the data obtained by simulation, the mean and the variance
are calculated. Details of the double orthogonal array design and combined array design are
in Bizimana (2010).

When the design scope is extended to the speci�cation of allowable deviations of parame-
ters from the nominal settings (tolerances), the integrated parameter and tolerance design
problems arise. The additional objective of minimizing the production costs needed to ful�l
tolerance speci�cations will compete with the minimum variance objective (Giovagnoli and
Romano (2008)).

1.2 Objectives

1.2.1 General objective

The main objective of the research is to develop a methodology for improving the study of
designed experiments in presence of Control factors and Noise factors.

1.2.2 Speci�c objectives

Two speci�c objectives are highlighted. The �rst speci�c objective is to present a methodol-
ogy for analyzing the Double orthogonal array design and Combined array design using the
criteria of Mean square error and Desirability function. The second speci�c objective is to
propose a methodology for pairwise comparisons of treatments in Double orthogonal array
design based on Signal-to-noise ratio.

1.3 Subdivisions of the thesis

The thesis is subdivided into four chapters. Chapter 1 concerns the general introduction.
It presents the background information of robust resigns and the objectives of the research.
Chapter 2 presents a methodological approach for conducting robust design of experiments.
The designs presented are the Double Orthogonal Array Design and Combined Array De-
sign. The purpose of this chapter is to give a methodological approach of modelling both the
mean and variance of a quality characteristic in robust designs. The data analysis is based
upon the mean square error criterion and the desirability function. The chapter emphasizes
the economic impact of conducting designed experiments in the industry. The impact is
measured by applying the Quality Loss Function . This highlight the aspect of robustness
proposed by Taguchi. Two examples borrowed from the existing literature on robust de-
signs are presented. The �rst example is a robust design conducted on a chemical process.

3



1.3. Subdivisions of the thesis

The second example is a robust design conducted on elastic element of a force transducer.
Chapter 3 describes a proposed method for conducting pairwise comparisons of treatments
considering the metric known as Signal-to-noise ratio. Simulation studies and real examples
are presented. Chapter 4 presents the general conclusions of this investigation.
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Chapter 2

Robust Design of Experiments: A

Methodological Approach

2.1 Double Orthogonal Array Design

The double orthogonal array design was initiated by Genichi Taguchi (Taguchi and Wu,
1985). It consists of a cross-product of two experimental designs. The �rst design, known as
inner design, is a combination of the levels of the design factors. The second design, referred
to as outer array design, is a combination of the levels of the noise factors. Each combination
of the levels of the design factors forms an experiment. For each experiment, the same array
of the noise factors is run.

Suppose that the quality characteristic, say y, of a product or a process depends on p design
factors x1, . . . , xp and q noise factors z1, . . . , zq. Observations of the quality characteristic,
say yij, are the combinations of the levels of the design factors (i = 1, 2, . . . , n) and the
levels of the noise factors (j = 1, 2, . . . , r). The total number of runs required to conduct
an experiment in this case is n× r. The experimental structure of double orthogonal array
design is represented by Figure 2.1.

Data analysis consists of �tting a second order regression model of the form

y = β0 + xTβ + xTBx+ ε. (2.1)

In this model, x is the vector of control factors, β0 the intercept, β is a vector of coe�cients
of 1st order control factors, B is a matrix of coe�cients of 2nd order terms of control factors
and their interactions, ε is a vector of random errors of the regression model. The random
errors are assumed to be N (0, σ2). The response y is the mean or the variance of the quality
characteristic.

Once the model in Equation (2.1) is adjusted to the data obtained from the experiment
as presented in Figure 2.1, the adjusted models for the mean and variance of the quality

5



2.2. Combined Array Design

Figure 2.1: Experimental structure of Double Orthogonal Array Design (DOAD).

z1 z11 z21 . . . zr1
z2 z12 z22 . . . zr2
...

...
...

...
...

zq z1q z2q · · · zrq

x1 x2 . . . xp Observations ȳ ln(s2)
x11 x12 · · · x1p y11 y12 · · · y1r ȳ1 ln(s2

1)
x21 x22 · · · x2p y21 y22 · · · y2r ȳ2 ln(s2

2)
...

...
...

...
...

...
...

...
...

...
xn1 xn2 · · · xnp yn1 yn2 · · · ynr ȳn ln(s2

n)

characteristic, say ŷMean and ŷV ar, are obtained. Model parameters are estimated by the
least squares method.

2.2 Combined Array Design

The combined array design is a single experimental design in control and noise factors. Both
control and noise factors are then modelled. The results of the experiment can be described
by a model with only a small number of main e�ects and low-order interactions. Signi�cant
design-by-noise interactions are interpreted as evidence of dispersion e�ects and are used to
choose settings of design factors that minimize the process variation. The data obtained
from the combined array design are analysed by �tting a model for the mean and variance.

Suppose that the quality characteristic y of a product or process depends on p design factors
x1, . . . , xp and q noise factors z1, . . . , zq. The experimental structure of the combined array
design is presented by Figure 2.2.

Figure 2.2: Experimental structure of Combined Array Design (CAD).

x1 x2 . . . xp z1 z2 . . . zq y

x11 x12 · · · x1p z11 z12 · · · z1q y11
...

...
... · · · ...

... · · · ...
...

xn1 xn2 · · · xnp zr1 zr2 · · · zrq ynr

2.2.1 Dual Response Surface Approach

Let the system be described by a variable y(x, z) that depends on a set of controllable factors
(the vector x) and a set of random noise factors (the vector z).

6



2.2. Combined Array Design

To explore the dependence of y on x and z, the following model is assumed for the response,
to accommodate control-by-noise interactions:

y(x, z) = β0 + βTx+ xTBx+ γTz + xT∆z + ε. (2.2)

In this model, z is the random noise vector, ε′s are independent and identically distributed
N (0, σ2) random errors. It is assumed that ε and z are independent. The constant β0,
the vectors β, γ and the matrices B and ∆ consist of unknown parameters, and σ2 is also
usually unknown. It is also assumed that E(z) = 0 and that Cov(z) = Ω is known.

After the model (2.2) is �tted to the data from the designed experiment, the corresponding
adjusted response model is given by the expression

ŷ(x, z) = β̂0 + xT β̂ + xT B̂x+ γ̂Tz + xT ∆̂z. (2.3)

The two response surfaces are obtained analytically from (2.3). Both response surfaces are
in terms of control factors.

Result 2.1 Mean response surface and variance response surface

Consider the model given by Equation 2.3. Then the mean response surface, and the variance
response surface are expressed as

Ez

(
ŷ(x, z)

)
= β̂0 + xT β̂ + xT B̂x and (2.4)

V arz

(
ŷ(x, z)

)
=
(
γ̂T + xT ∆̂

)
Ω
(
γ̂ + ∆̂Tx

)
, (2.5)

respectively.

Proof:

Calculating the expected value and the variance of ŷ(x, z) with respect to the random
vector z leads to

Ez

(
ŷ(x, z)

)
= Ez

[
β̂0 + xT β̂ + xT B̂x+ γ̂Tz + xT ∆̂z

]
= Ez

[
β̂0 + xT β̂ + xT B̂x

]
+ Ez

[
γ̂Tz + xT ∆̂z

]
= Ez

[
β̂0 + xT β̂ + xT B̂x

]
= β̂0 + xT β̂ + xT B̂x

7



2.2. Combined Array Design

and

V arz

(
ŷ(x, z)

)
= V arz

[
β̂0 + xT β̂ + xT B̂x+ γ̂Tz + xT ∆̂z

]
= V arz

[
β̂0 + xT β̂ + xT B̂x

]
+ V arz

[
γ̂Tz + xT ∆̂z

]
= V arz

[
γ̂Tz + xT ∆̂z

]
= V arz

[(
γ̂T + xT ∆̂

)
z
]

=
(
γ̂T + xT ∆̂

)
V ar(z)

(
γ̂T + xT ∆̂

)T
=
(
γ̂T + xT ∆̂

)
Ω
(
γ̂ + ∆̂Tx

)
�

In the literature, various methods of optimization have been developed in order to obtain
the optimal solution for the mean of the quality characteristic while minimizing the variance
of the process. Mares and Domínguez (2013) have summarized and compared those meth-
ods. Myers and Carter (1973), and Myers and Vining (1990) have introduced the method
commonly used in the dual response surface approach. They �rst �t second order models
to both primary and secondary response surfaces. In this case, they are respectively, the
mean and variance. Then, they optimize the primary response subject to an appropriate
constraint on the value of the secondary response.
The optimal solution for the mean response is obtained by solving the problem:

Optimize Ez

(
ŷ(x, z)

)
Subject to V arz

(
ŷ(x, z)

)
= σ2

0

x ∈ R.

(2.6)

The optimal solution for the variance model is the solution of the following problem:
Minimize V arz

(
ŷ(x, z)

)
Subject to Ez

(
ŷ(x, z)

)
= T

x ∈ R.

(2.7)

R is the experimental region.

Lin and Tu (1995) argue that this method of optimization may be misleading, because the
variance, which is to be minimized in the process, is forced to a �xed value. They propose
a new procedure based on the mean square error criterion.
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2.3. Mean Square Error Approach

2.3 Mean Square Error Approach

The mean square error (MSE) is an e�ective criterion to combine the mean and the standard
deviation responses in dual response optimization.

The MSE function for the target is best case is given by

M̂SE =

[ŷMean − T ]2 − ŷV ar : Case of DOAD[
Ez

(
ŷ(x, z)

)
− T

]2

+ V arz

(
ŷ(x, z)

)
: Case of CAD

(2.8)

where T is the target value.

The MSE function for the smaller-the-better case is determined as follows

M̂SE =

[ŷMean]2 − ŷV ar : Case of DOAD[
Ez

(
ŷ(x, z)

)]2

+ V arz

(
ŷ(x, z)

)
: Case of CAD

(2.9)

The MSE function for the larger-the-better type is given by the expression

M̂SE =

[ŷMean −H]2 − ŷV ar : Case of DOAD[
Ez

(
ŷ(x, z)

)
−H

]2

+ V arz

(
ŷ(x, z)

)
: Case of CAD

(2.10)

where H is the highest plausible value of ŷMean or Ez

(
ŷ(x, z)

)
.

The optimization problem to solve is then{
Minimize M̂SE

Subject to x ∈ R.
(2.11)

The advantage of the MSE approach is that it does not require any constraints on the
secondary response, and it can handle more realistic models and much more complicated
models than polynomial models.

2.4 Desirability Function

The desirability function to simultaneously optimizing multiple equations was originally
proposed by Harrington (1965). The common approach is to transform each response ŷi into
an individual function di that varies over the range [0, 1].
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2.4. Desirability Function

2.4.1 Individual desirability function

Depending on whether a particular response ŷi is to be maximized, minimized, or assigned a
target value, the corresponding desirability function, di, is de�ned as follows (Derringer and
Suich (1980)):

• The nominal-the-best (NTB) case:

di =



0 if ŷi(x) ≤ Li or ŷi(x) ≥ Ui(
ŷi(x)−Li
Ti−Li

)r
if Li < ŷi(x) < Ti(

ŷi(x)−Ui
Ti−Ui

)r
if Ti < ŷi(x) < Ui

1 if ŷi(x) = Ti

• The smaller-the-better (STB) case:

di =


1 if ŷi(x) ≤ Li(
ŷi(x)−Ui
Li−Ui

)r
if Li < ŷi(x) < Ui

0 if ŷi(x) ≥ Ui

• The larger-the-better (LTB) case:

di =


0 if ŷi(x) ≤ Li(
ŷi(x)−Li
Ui−Li

)r
if Li < ŷi(x) < Ui

1 if ŷi(x) ≥ Ui

The values of Li and Ui are some acceptable lower bound and upper bound for ŷi(x), and Ti
is the target value. The value of r can be chosen so that the desirability criterion is easier

or more di�cult to satisfy, indicating the weight of ŷi(x) in the process.

2.4.2 Overall desirability function

For an n responses system, the overall performance of the system is determined by the overall
desirability D, which can be expressed as the geometric mean:

D =

(
n∏
i=1

di

)1/n

. (2.12)

The optimization problem to solve is then{
Maximize D

Subject to x ∈ R.
(2.13)
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2.5. Desirability Function Based on Mean Square Error Criterion

2.5 Desirability Function Based on Mean Square Error

Criterion

Suppose that k quality characteristics (y(1), y(2), . . . , y(k)) of a product or process depend on p
design factors (x1, x2, . . . , xp) and q noise factors (z1, z2, . . . , zq). The experimental structure
of the combined array design in the case of multiple responses is presented by Figure 2.3.

Figure 2.3: Experimental structure of Combined array design with multiple responses.

x1 . . . xp z1 . . . zq y(1) . . . y(k)

x11 · · · x1p z11 · · · z1q y
(1)
11 . . . y

(k)
11

... · · · ...
... · · · ...

...
...

...

xn1 · · · xnp zr1 · · · Zrq y
(1)
nr . . . y

(k)
nr

We consider the quadratic model described by Myers et al. (1992). For the ith response, the
matrix notation of the model can be written as follows:

y(i)(x, z) = β
(i)
0 + β(i)Tx+ xTB(i)x+ γ(i)Tz + xT∆(i)z + ε(i); i = 1, . . . , k, (2.14)

where

• y(i)(x, z) denotes the ith response,

• x denotes the vector of control factors,

• z denotes the vector of noise factors,

• β(i)
0 is the intercept,

• β(i) is the vector of coe�cients for the linear e�ects in control variables,

• B(i) is the matrix whose main diagonals are the regression coe�cients associated with
the pure quadratic e�ects of the control factors and whose o�-diagonals are one-half of
the mixed quadratic (interaction) e�ects of the control factors,

• γ(i) is the vector of coe�cients for the linear e�ects in the noise factors,

• ∆(i) is the matrix of the control-by-noise interaction coe�cients,

• ε(i) is a random error.

It is assumed that the ε(i)s are independently and identically distributed N(0, σ2
ε(i)

) and that
all noise factors are continuous. It is also assumed that, in accordance with design level
centering and scaling, E(z) = 0 and V ar(z) = Ω = σ2

zI.
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2.5. Desirability Function Based on Mean Square Error Criterion

Considering these assumptions and using expectation and variance operations taken over z
on Equation (2.14), we derive the mean and variance response surfaces.

Result 2.2 Mean response surface and variance response surface for the ith re-

sponse variable

Consider the model given by Equation (2.14). Then the mean response surface, and the
variance response surface corresponding to the ith response variable are

Ez

(
y(i)(x, z)

)
= β

(i)
0 + β(i)Tx+ xTB(i)x; i = 1, . . . , k. and

V arz
(
y(i)(x, z)

)
=
(
γ(i)T + xT∆(i)

)
Ω
(
γ(i) + ∆(i)Tx

)
+ σ2

ε(i) ; i = 1, . . . , k, (2.15)

respectively.

Proof:

Calculating the expected value and the variance of y(i)(x, z) with respect to the random
vector z leads to

Ez

(
y(i)(x, z)

)
= Ez

[
β

(i)
0 + β(i)Tx+ xTB(i)x+ γ(i)Tz + xT∆(i)z + ε(i)

]
= Ez

[
β

(i)
0 + β(i)Tx+ xTB(i)x

]
+ Ez

[
γ(i)Tz + xT∆(i)z + ε(i)

]
= Ez

[
β

(i)
0 + β(i)Tx+ xTB(i)x

]
= β

(i)
0 + β(i)Tx+ xTB(i)x

and

V arz
(
y(i)(x, z)

)
= V arz

[
β

(i)
0 + β(i)Tx+ xTB(i)x+ γ(i)Tz + xT∆(i)z + ε(i)

]
= V arz

[
β

(i)
0 + β(i)Tx+ xTB(i)x

]
+ V arz

[
γ(i)Tz + xT∆(i)z + ε(i)

]
= V arz

[
γ(i)Tz + xT∆(i)z + ε(i)

]
= V arz

[(
γ(i)T + xT∆(i)

)
z + ε(i)

]
=
(
γ(i)T + xT∆(i)

)
V ar(z)

(
γ(i)T + xT∆(i)

)T
+ V arz

[
ε(i)
]

=
(
γ(i)T + xT∆(i)

)
Ω
(
γ(i) + ∆(i)Tx

)
+ σ2

ε(i) ; i = 1, . . . , k �

After �tting the models in Equation (2.15) to the data, the corresponding adjusted response
models are given by the expressions:

Êz

(
y(i)(x, z)

)
= β̂

(i)
0 + β̂(i)

T

x+ xT B̂(i)x; i = 1, . . . , k. (2.16)

V̂ arz
(
y(i)(x, z)

)
=

(
γ̂(i)

T

+ xT∆̂(i)

)
Ω

(
γ̂(i) + ∆̂(i)

T

x

)
+ σ̂2

ε(i)
; i = 1, . . . , k.
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2.5. Desirability Function Based on Mean Square Error Criterion

The values of error variances σ̂2
ε(i)

; i = 1, . . . , k are the residual mean squares obtained from
�tting the model to the data.

As we aim to apply the desirability function approach based on the mean square error
criterion, we determine the individual mean square error function for each response, i.e.,

M̂SE(i); i = 1, . . . , k, depending upon the purposes of the experiment. We calculate the
corresponding individual desirability function:

d(i) = h
(
M̂SE(i)(x)

)
; i = 1, . . . , k. (2.17)

We now determine the individual desirability functions.

2.5.1 Individual desirability functions based on mean square error
criterion

For the smaller-the-better type, the individual desirability function of the ith mean square
error is given by

d(i) =


1 if M̂SE(i)(x) ≤ L(i)(
M̂SE(i)(x)−U(i)

L(i)−U(i)

)r
if L(i) < M̂SE(i)(x) < U (i)

0 if M̂SE(i)(x) ≥ U
(i)
i ; i = 1, . . . , k

(2.18)

where L(i) = M̂SE(i) (xmin) and U (i) = M̂SE(i) (xmax). xmin and xmax are respectively
solutions of the following optimization problems:{

Minimize M̂SE(i)(x)

Subject to x ∈ R; i = 1, . . . , k
and

{
Maximize M̂SE(i)(x)

Subject to x ∈ R; i = 1, . . . , k

The overall desirability function is determined as

D =

(
k∏
i=1

d(i)

)1/k

. (2.19)

The common optimal setting for k response variables is obtained by solving the following
optimization problem: {

Maximize D

Subject to x ∈ R.
(2.20)
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2.6. Economic Impact of Designed Experiments

2.6 Economic Impact of Designed Experiments

In this section, we assess the economic impact of designed experiment using the quadratic
loss function. The quadratic loss function (QLF) is a metric used to provide a better es-
timate of the monetary loss incurred by manufacturers and consumers when the product
performance deviates from its target value Meng et al. (2010). Then, the QLF is used to
evaluate the economic impact of conducting an experiment on the process.

The QLF is given by the expression

L(y) = k(y − T )2, (2.21)

where y is the quality characteristic of a product or process, T is the target value and k is
the quality loss coe�cient.
The expected quality loss (EQL) is

Q = E [L(y)] = kE(y − T )2 = k
[
(E(y)− T )2 + V ar(y)

]
.

By taking E(y) = µ and V ar(y) = σ2, the expected quality loss becomes

Q = k
[
(µ− T )2 + σ2

]
. (2.22)

Then the estimate of expected quality loss is:

Q̂ = k
[
(µ̂− T )2 + σ̂2

]
, (2.23)

where µ̂ = ȳ and σ̂2 = s2.

The quality loss coe�cient k is determined by �rst �nding the functional limits or customer
tolerance for y. The function limits are determined by T ± ∆0. These are the points at
which the product would fail or produce unacceptable performance in approximately half of
the customer applications. Let A0 be the value of the quality loss function at T ±∆0, that
is L(y) = A0 at y = T ±∆0. Substituting the functional limits T ±∆0 and the value of the
quality loss into Equation (2.21), the quality loss coe�cients is found to be

k =
A0

(∆0)2 .

2.6.1 Types of Quadratic Loss Functions

While conducting an experiment, the designer is interested in reaching the target value or
minimizing or maximizing the value of the quality characteristic. These three cases of qual-
ity characteristics are referred to as the nominal-the-best type (NTB), the smaller-the-better
(STB) and the larger-the-better (LTB), respectively.
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2.7. Illustrative Examples

Let yT = (y1, y2, . . . , yn) be a vector of observations where y is the quality characteristic
of a product or process. Table 2.1 shows the types of QLF and the average quadratic loss
functions corresponding to each kind of quality characteristic of interest. More details on
this section can be found in Fowlkes and Creveling (1995).

Table 2.1: Types of Quadratic Loss Functions.

Type Quadratic Loss Expected Quality Loss Estimate of Expected Quality Loss

NTB L(y) = k(y − T )2 Q = k
(
(µ− T )2 + σ2

)
Q̂ = k

(
(ȳ − T )2 + s2

)
STB L(y) = ky2 Q = k (µ2 + σ2) Q̂ = k

(
ȳ

2
+ s2

)
LTB L(y) = k′

y2 Q = k′

µ2

(
1 + 3σ2

µ2

)
Q̂ = k′

ȳ2

(
1 + 3s2

ȳ2

)

In this table, k = A0

(∆0)2 and k′ = A0 (∆0)2.

2.7 Illustrative Examples

2.7.1 Example 1:
Robust design conducted on a chemical process

Problem statement and Design

The application is a chemical process adapted from (Lawson, 2010). In this process, side
reactions create tars that result in lower product quality. When the level of tars produced
is too high, yield decreases and further blending must be done with the �nished product to
decrease tar to a level that is acceptable to customers. The tars were thought to be created
by reactions involving impurities in the most expensive reagent, A, and other impurities that
accumulate in the recycle solvent stream. The proposed method to solving the problem was
to experiment with the setting of process variables, or design parameters, to see if operating
conditions could be found that were less sensitive to impurities in reagent A and the solvent
stream (Lawson, 1990).

The objectives of conducting a designed experiment are to diminish the proportion of impu-
rities and to reduce the variance of the process.

The response variable is the proportion of impurities (in percentage). The factors involved in
this experiment are 3 design factors and 2 noise factors. The design factors are x1 : reaction
temperature, x2 : the catalyst concentration, x3 : the excess of reagent B. The noise factors
are z1 : purity of reagent A, z2 : purity of the solvent stream. It is assumed that z1 and z2

are uncorrelated and σ2
z1

= σ2
z2

= 1 so that the variance-covariance matrix, say cov(z) = Ω,
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is an identity matrix of dimension 2.

Experiments are performed at combinations of levels of the design factors de�ned by a Box-
Behnken design. The combinations of levels of the noise factors are arranged in a 22 factorial
design. This means that an experiment for 15 combinations of the control factors is realised,
and each of these is repeated in each of the possible combinations of the noise factors. Coded
and real levels of the factors, and the results obtained from the experiment are shown in
Table A.1.

Methods of analysis

As the aim of the experiment is to diminish the proportion of impurities, it is convenient to
apply the optimization method proposed by Lin and Tu (1995). In Harrington (1965), the
method is referred to as Mean Square Error Criterion. In this application, the target T = 0.

In addition, we apply the desirability function to obtain the optimal settings. For con-
vinience, full models are considered, regardless of the presence of some nonsigni�cance e�ects
in the �tted models.

Results

The estimated mean response and estimated variance response surfaces are:

ŷ
Mean

= 14.80− 8.17x1 − 9.09x2 − 0.14x3 + 0.52x2
1 + 8.30x1x2 + 0.07x1x3 + 5.01x2

2

+ 0.18x2x3 + 0.18x2
3.

ŷ
Var

= exp(2.59 + 0.03x1 − 1.66x2 + 0.58x3 − 0.21x2
1 + 0.03x1x2 + 0.02x1x3 + 0.34x2

2

− 0.07x2x3 + 0.48x2
3).

• MSE approach

The optimization problem to solve is:

Minimize (14.80− 8.17x1 − 9.09x2 − 0.14x3 + 0.52x2
1 + 8.30x1x2 + 0.07x1x3

+5.01x2
2 + 0.18x2x3 + 0.18x2

3)2 + exp(2.59 + 0.03x1 − 1.66x2

+0.58x3 − 0.21x2
1 + 0.03x1x2 + 0.02x1x3 + 0.34x2

2 − 0.07x2x3 + 0.48x2
3)

Subject to −1 ≤ x1 ≤ 1

−1 ≤ x2 ≤ 1

−1 ≤ x3 ≤ 1.

The solution of this optimization problem uses the nloptr package (Ypma (2015)). Con-
tour and perspective plots of the mean, variance and MSE responses (in Appendix C.1) are
sketched using the rsm package (Lenth (2015)).
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• Desirability function approach

The lower and upper bound for the mean response are respectively given by LMean =
ŷMean(xmin) and UMean = ŷMean(xmax), where xmin and xmax are respectively solutions
of the following optimization problems:{

Minimize ŷMean

Subject to x ∈ R
and

{
Maximize ŷMean

Subject to x ∈ R.

Similar logic leads to LV ar = ŷV ar(xmin) and UV ar = ŷV ar(xmax), where xmin and
xmax are respectively solutions of the optimization problems:{

Minimize ŷV ar

Subject to x ∈ R
and

{
Maximize ŷV ar

Subject to x ∈ R.

Table 2.2 displays the values obtained.

Table 2.2: Lower bounds and upper bounds of individual desirability functions.

LMean : 7.11 LV ar : 2.21
UMean : 46.5 UV ar : 79.04

The individual desirability functions for the proportion of impurities and its variance are
respectively

d (ŷMean) =


1 if ŷMean ≤ 7.11
ŷMean−46.5
7.11−46.5

if 7.11 < ŷMean < 46.5

0 if ŷMean ≥ 46.5

and

d (ŷV ar) =


1 if ŷV ar ≤ 2.21
ŷV ar−79.04
2.21−79.04

if 2.21 < ŷV ar < 79.04

0 if ŷV ar ≥ 79.04.

The overall desirability function is

D =
√
d (ŷMean)× d (ŷV ar).

17



2.7. Illustrative Examples

The optimization problem to solve is the following:
Maximize D

Subject to −1 ≤ x1 ≤ 1

−1 ≤ x2 ≤ 1

−1 ≤ x3 ≤ 1.

We adapt the desirability package (Kuhn (2015)) to solve the previous optimization problem.
The results of Example 1 are summarized in Table 2.3.

Table 2.3: Optimal conditions for the chemical process problem.

Approach Statistic Optimal results
x
Opt

(1,0.16405,-0.32174)
Mean Square Error ŷMean(xOpt) 7.19

ŷVar(xOpt) 7.42

M̂SE 59.1
x
Opt

(1, 0.43189, -0.57353)
Desirability Function ŷMean(xOpt) 7.8

ŷVar(xOpt) 4.79

M̂SE 65.6
Desirability 0.97446

As far as it may concern, if the main objective of the experiment is to reduce the proportion
of impurities, the mean square error approach gives the best results. On the contrary, if the
interest is the reduction of variability in the process, the desirability function seems to be
the best method of analysis.

When both the reduction of proportion of impurities and reduction of variablity are of utmost
importance, the selection of the design to be conducted and the method of analysis to be
adopted will take into account the estimated value of the corresponding quality loss function.

The quality loss function accounts for the loss in terms monetary funds incurred by the
deviation from the target and high variability in the process. Example 2 illustrates the use
of quality loss function.

2.7.2 Example 2: Economic impact of a robust design conducted
on a chemical process

The process is working in real conditions of x1 = 200, x2 = 28 and x3 = 17 for the reaction
temperature, catalyst concentration and excess of reagent B, respectively. A sample of 24
data is taken to verify the conditions of impurities. These refer to the mean and variance
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of the process. The sample values are: 23.08, 23.01, 18.11, 20.14, 47.14, 23.20, 17.12, 18.93,
21.42, 22.72, 20.36, 24.99, 32.77, 25.26, 19.50, 23.14, 23.09, 30.49, 35.72, 21.95, 26.43, 24.48,
34.21, 25.03 (Mares & Domínguez, 2013).
The corresponding sample mean and sample variance are, respectively

y =
1

24

24∑
i=1

yi = 25.1 and s2 =
1

23

24∑
i=1

(yi − y)2 = 45.64.

Therefore, the estimate of the expected quality loss (EQL) for the quadratic loss is:

Q̂process = k(y2 + s2) = (25.1)2 + 45.64 = 675.65,

where k = 1. This constant in practice plays a very important role because it indicates the
overall cost of poor quality.

We now calculate the estimate of the expected quality loss of the optimal process conditions
as given by Table 2.1.
The estimate of the expected quality loss of the designed experiment is de�ned as

Q̂doe = ŷMean(xOpt
)2 + ŷVar(xOpt

)2.

The overall di�erence between the estimate of the expected quality loss of the real process
and the estimate of the expected quality loss of the optimal process conditions of the designed
experiment, this is ∆ = Q̂process − Q̂doe, indicates the expected gain incurred by conducting
the process in its optimal conditions. Table 2.4 presents the results.

Table 2.4: Economic impact of designed experiment.

Approach Economic impact Double Orthogonal Array Design

Mean Square Error Q̂doe 59.116
∆ 616.53

Desirability Function Q̂doe 65.63
∆ 610.02

We can see that the estimate of the expected quality loss of the designed experiment, Q̂doe,
ranges between 59.116 and 65.63 monetary units, while the overall di�erence that indicates
the gain incurred by conducting the process under the optimal conditions, ∆, ranges between
610.02 and 616.53 monetary units.
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2.7.3 Example 3: Robust design conducted on the elastic element
of a force transducer

Problem statement and Design

The application is a robust design conducted on the elastic element of a force transducer.
This is a case study presented by Romano et al. (2004) and revisited by Köksoy (2006). A
transducer is a device that provides an output quantity having a determined relationship to
the parameter being measured, the force in this case.

When a compressive load is applied to the elastic element a peculiar strain pattern is created
over the central section of the elastic element, where strain peaks due to design factors. The
deformation of the element is then measured by a second device which converts it into a
measurable output.

The design of the element is intended to minimize the transducer's inaccuracy, which orig-
inates from two major sources, namely non-linearity and hysteresis. These two indicators
de�ne responses y1 and y2. The non-linearity e�ect is the ratio between longitudinal strain
and transversal strain. The hysteresis indicator is the ratio between maximum strain on the
measuring area and longitudinal strain.

This example involves a combined array design with three control factors (x) and two noise
factors (z). Control factors are the three parameters de�ning the element con�guration,
namely lozenge angle (x1), bore diameter (x2), and half-length of the vertical segment (x3).
Noise factors are the deviation of the lozenge angle from its nominal value z1 and the deviation
of the bore diameter from its nominal value z2. These internal noise factors are admittedly
independent. They are assumed to be normally distributed with zero mean and variances of
σ2

1 and σ2
2. Table A.2 in Appendices displays the coded and real levels of the factors, and

the results obtained from the experiment.

The aim of this experiment is to �nd the settings for the lozenge angle (x1), bore diameter
(x2), and half-length of the vertical segment (x3) which minimize the hysteresis (y2) and
achieve a target value of 1 for the non-linearity indicator (y1).

The experimental design used is a central composite design (CCD) made up of a half-fraction
design of a �ve factor-two level factorial design, star points for control factors only, and a
threefold center point.

Methods of analysis

As the problem is a multiple response case, we apply the desirability function based on mean
square error criterion. It is assumed that z1 and z2 are uncorrelated and σ2

z1
= σ2

z2
= 1.

Hence, Ω = V ar(z) =

(
1 0
0 1

)
.
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Results

The following prediction equations are obtained for non-linearity and hysteresis indicator:

̂y(1)(x, z) = 1.377− 0.361x1 − 0.155x2 + 0.077x3 + 0.042x2
1 + 0.007x2

2 + 0.002x2
3 − 0.148x1x2

+ 0.022x1x3 + 0.013x2x3 − 0.059z1 − 0.012z2 + 0.010x1z1 − 0.008x1z2 − 0.006x2z1

+ 0.001x2z2 + 0.005x3z1 + 0.003x3z2.

̂y(2)(x, z) = 1.660 + 0.592x1 + 0.438x2 − 0.095x3 + 0.247x2
1 − 0.123x2

2 + 0.047x2
3 + 0.301x1x2

− 0.143x1x3 − 0.033x2x3 + 0.066z1 − 0.042z2 + 0.079x1z1 + 0.017x1z2 − 0.031x2z1

− 0.061x2z2 − 0.004x3z1 − 0.014x3z2.

The corresponding estimated mean models are:

Êz(y(1)(x, z)) =1.377− 0.361x1 − 0.155x2 + 0.077x3 + 0.042x2
1 + 0.007x2

2 + 0.002x2
3

− 0.148x1x2 + 0.022x1x3 + 0.013x2x3.

Êz

(
y(2)(x, z)

)
=1.660 + 0.592x1 + 0.438x2 − 0.095x3 + 0.247x2

1 − 0.123x2
2 + 0.047x2

3

+ 0.301x1x2 − 0.143x1x3 − 0.033x2x3.

Details on related calculations are given in Appendix B.1.
The models for the variances are given by:

V̂ arz
(
y(1)(x, z)

)
=3.925× 10−3 − 9.88× 10−4x1 + 6.84× 10−4x2 − 6.62× 10−4x3

+ 1.64× 10−4x2
1 + 3.7× 10−5x2

2 + 3.4× 10−5x2
3 − 1.36× 10−4x1x2

+ 5.2× 10−5x1x3 − 5.4× 10−5x2x3.

V̂ arz
(
y(2)(x, z)

)
=0.04312 + 0.009x1 + 1.032× 10−3x2 + 6.48× 10−4x3 + 0.00653x2

1

+ 4.682× 10−3x2
2 + 2.12× 10−4x2

3 − 6.972× 10−3x1x2

− 1.108× 10−4x1x3 + 1.956x2x3.

Detailed calculations are displayed in Appendix B.2.

Next, the individual MSE functions are computed from the two responses, i.e., M̂SE(1) for

the non-linearity indicator and M̂SE(2) for the hysteresis indicator. These functions are
given by the following expressions:

̂
MSE

(1)
NTB =

[
Êz

(
y(1)(x, z)

)
− 1
]2

+ V̂ arz
(
y(1)(x, z)

)
.

̂
MSE

(2)
STB =

[
Êz

(
y(2)(x, z)

)]2

+ V̂ arz
(
y(2)(x, z)

)
.

As the MSE criterion implies the minimization of the MSE, the corresponding desirability
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function is of the smaller-the-better type. The individual desirability function corresponding
to each of the individual mean square error, i.e., MSE(1) and MSE(2) is given by:

d(i) = h
(
M̂SE(i)(x)

)
=


1 if M̂SE(i)(x) ≤ L(i)(
M̂SE(i)(x)−U(i)

L(i)−U(i)

)r
if L(i) < M̂SE(i)(x) < U (i)

0 if M̂SE(i)(x) ≥ U (i); i = 1, 2; r = 1

where L(i) = M̂SE(i) (xmin) and U (i) = M̂SE(i) (xmax). xmin and xmax are respectively
solutions of the following optimization problems:{

Minimize M̂SE(i)(x)

Subject to x ∈ R; i = 1, 2
and

{
Maximize M̂SE(i)(x)

Subject to x ∈ R; i = 1, 2.

Table 2.5 displays the values for L(i)'s and U (i)'s.

Table 2.5: Ranges for individual desirability functions.

L(1) : 0.00281 L(2) : 1.06
U (1) : 0.07277 U (2) : 8.42

Hence, individual desirability functions are, respectively

d(1) = h
(
M̂SE(1)(x)

)
=


1 if M̂SE(1)(x) ≤ 0.00281
M̂SE(1)(x)−0.07277

0.00281−0.07277
if 0.00281 < M̂SE(1)(x) < 0.07277

0 if M̂SE(1)(x) ≥ 0.07277

and

d(2) = h
(
M̂SE(2)(x)

)
=


1 if M̂SE(2)(x) ≤ 1.06
M̂SE(2)(x)−8.42

1.06−8.42
if 1.06 < M̂SE(2)(x) < 8.42

0 if M̂SE(2)(x) ≥ 8.42.

The overall desirability function is determined as follows:

D =

(
2∏
i=1

d(i)

)1/2

=

[
2∏
i=1

h
(
M̂SE(i)(x)

)]1/2

.

The optimum operating conditions are obtained by solving the following optimization prob-
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lem: {
Maximize D

Subject to −1 ≤ xj ≤ 1; j = 1, 2, 3.

Table 2.6 presents the results obtained.

Table 2.6: Optimal settings and related estimates.

Method Statistic Optimal results for y(1) Optimal results for y(2)

xopt (0.38916,−1,−0.98629) (0.38916,−1,−0.98629)
Êz

(
y(i)(xopt, z)

)
1.39 1.41

DF based on MSE V̂ arz
(
y(i)(xopt, z)

)
0.00358 0.0555

M̂SE(i)(xopt) 0.158 2.05

Desirability 0.82496 0.82496

Industrial problems commonly call for a multiresponse approach in robust design since prac-
tical applications routinely present more than one quality characteristic to be targeted. The
desirability function based upon the mean square error is an excelent tool for analysing the
data obtained from such an experiment.

2.8 Conclusions

We present a methodological approach for conducting robust designs and analysing the data
obtained. An overview of di�erent approaches used to conduct robust design and analyse
the data is provided. We have presented the Taguchi approach commonly known as double
orthogonal array design and the combined array design. The mean square error criterion
and desirability function have been used as optimization procedures to �nding the optimal
conditions of the process.

To highlight the practical implementation of the double orthogonal array design, we have
given an illustrative example on a chemical process where the objectives are to diminish the
proportion of impurities and to reduce the variance of the process.

Focusing on the proportion of impurities, the mean square error approach gives the best
results, and when the main interest is the reduction of variability in the process, the desir-
ability function seems to be the best method of analysis.

When both, the reduction of proportion of impurities and reduction of variability are of
utmost importance, the selection of the design and the method of analysis to be used must
take into account the estimated value of the quality loss function. Based upon the quality
loss function, we have given an illustrative example that highlights the practical importance
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of conducting a designed experiment in order to reduce the overall cost of the production.
In this example, the estimate of the expected quality loss of the designed experiment, Q̂doe,
ranges between 59.116 and 68.596 monetary units, while the overall di�erence that indicates
the gain incurred by conducting the process under the optimal conditions, ∆, ranges between
607.77 and 616.53 monetary units.

The combined array design is illustrated by an example of a robust design conducted on the
elastic element of a force transducer. This is an example of a robust design with several
response variables. The objective of the design is to determine the optimal combinations of
the design factors so that the hysteresis indicator is minimized and the non-linearity indicator
is brought to 1. Data analysis is based on desirability function applied on mean square error
functions.
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Chapter 3

Signal-to-Noise Ratios: Statistical Tests

for Pairwise Comparisons

3.1 Introduction

Robust parameter design is one of the most creative and e�ective tools in quality engineering.
This tool works by identifying factor settings to reduce the variation in products or processes.
Robust parameter design had been practised in Japan for many years before it was introduced
to the US by its originator Genichi Taguchi in the mid-1980's (Bérubé and Wu (2000)).
Robust parameter design is the operation of choosing settings for the design parameters of
a product or manufacturing process to reduce sensitivity to noise. Noise is hard-to-control
variability a�ecting performance (León et al. (1987)). One of the central ideas in Taguchi's
approach to parameter design is the use of the performance criterion that he called Signal-to-
noise ratio (SNR) for variation reduction and parameter optimization. The signal-to-noise
is a performance measure that combines the mean response and variability (Myers et al.
(1992)). The extend to which maximization of such criterion can be linked with minimization
of quadratic loss was considered by León et al. (1987). The signal-to-noise ratio that is used
depends on the goal of the experiment. The di�erent goals are as follows:

1. The nominal-the-best: The experimenter wishes for the response to attain a certain
target value.

2. The smaller-the-better: The experimenter is interested in minimizing the response.

3. The larger-the-better: The experimenter is interested in maximizing the response.

The signal-to-noise ratio has generated a lot of controversies as seen by the discussions on
Box's paper (Box (1988)) and the panel discussions edited by Nair (1992).

The objective of this chapter is to propose a statistical test for pairwise comparisons of
treatments in robust design based on signal-to-noise ratio criteria.
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3.2. Brief Recall of the Taguchi Design

3.2 Brief Recall of the Taguchi Design

We recall the robust design in double orthogonal array structure as initiated by Taguchi.
Taguchi (1991) recommends the following strategy for parameter design optimization. The
set-up of the experiment is a cross array (also called inner-outer array or double orthogonal
array design). The control factors are varied according to an orthogonal array called con-
trol array (or inner array) and for each setting of the control factors, the noise factors are
varied systematically according to an orthogonal array called noise array (or outer array).
The analysis of the inner array is made with the signal-to-noise ratio being the performance
criterion. One seeks to maximize the signal-to-noise ratio.

Suppose that the quality characteristic, say y, of a product or a process, depends on p design
factors x1, . . . , xp and q noise factors z1, . . . , zq. The responses yij are the combinations of the
levels of the design factors (i = 1, 2, . . . , n) and the levels of the noise factors (j = 1, 2, . . . , r).
The total number of runs required to conduct an experiment in this case is n × r. The
experimental structure of double orthogonal array design is represented by Figure 3.1.

Figure 3.1: Experimental structure of the inner-outer array design.

z1 z11 z21 . . . zr1
z2 z12 z22 . . . zr2
...

...
...

...
...

zq z1q z2q · · · zrq
x1 x2 . . . xp Observations ȳ s2 SNR
x11 x12 · · · x1p y11 y12 · · · y1r ȳ1 s2

1 SNR1

x21 x22 · · · x2p y21 y22 · · · y2r ȳ2 s2
2 SNR2

...
...

...
...

...
...

...
...

...
...

...
xn1 xn2 · · · xnp yn1 yn2 · · · ynr ȳn s2

n SNRn

3.3 Forms of Signal-to-noise Ratio (SNR)

Let y1, y2, . . . , yn be a realization of iid random variables Y1, Y2, . . . , Yn normally distributed
with mean µ and variance σ2.
Considering the objective of the designed experiment, Taguchi de�nes three situations and
assigns the corresponding expression of signal-to-noise ratio to each case (Phadke (1989)).

3.3.1 Signal-to-noise ratio for the nominal-the-best case

In many cases, it is of interest to achieve a certain target value for the response, say y = T ,
while the variation is minimum. Deviations in either direction are undesirable. In this case,
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3.3. Forms of Signal-to-noise Ratio (SNR)

Taguchi recommends the following signal-to-noise ratio:

SNRT = 10 log10

(
µ2

σ2

)
. (3.1)

Its estimate is obtained as

ŜNRT = 10 log10

(
ȳ2

s2

)
, (3.2)

where

• ȳ = 1
n

∑n
i=1 yi is the average location for an experimental run, and

• s2 = 1
n−1

∑n
i=1 (yi − ȳ)2 is the sample variance computed from the response values in

the inner array.

Note that Equation (3.2) can be written as ŜNRT = 10log10 (ȳ2)−10log10 (s2). Kacker (1985)
pointed out that often in cases where the response variance and mean are independent, one
or more factors (tuning or adjustment factors) can be used in order to eliminate response
bias, that is, the adjustments result in E(y) = T . If one assumes an additive model, the
loss function E(y − T )2 reduces to V ar(y). As a result, the estimate of the signal-to-noise

ratio reduces to ŜNRT = −10 log (s2). The factor levels in the inner array are chosen so that
the estimate of the signal-to-noise ratio is maximized. Consequently, if the mean ȳ is set at

a target value, then maximizing ŜNRT is equivalent to minimizing log10 (s2) (Myers et al.
(1992)). When the variation in the log10 (s2) component is larger than the variation in the

log (ȳ2) component, ŜNRT is dominated by the variation in log10 (s2). Therefore an analysis
of the signal-to-noise ratio essentially reduces to an analysis of log10 (s2) (Bérubé and Wu
(2000)).

3.3.2 Signal-to-noise ratio for the smaller-the-better case

Taguchi treats this situation as if there is a target value of zero. As a result, the quadratic
loss function E(y−0)2 leads to a performance criterion derived from E(y)2. The expectation
is taken over the distribution of the noise variables. One assumes that each design point in
the control variables contains n runs in the noise variables from the outer array. As a result,
the performance characteristic is based on 1

n

∑n
i=1 y

2
i .

Taguchi makes use of the logarithmic transformation, and thus suggests as the appropriate
signal-to-noise ratio which is used when the objective is to minimize the response while the
variation is minimum:

ŜNRS = −10 log10

(
1

n

n∑
i=1

y2
i

)
, (3.3)

where n denotes the number of replications per run.
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3.3.3 Signal-to-noise ratio for the larger-the-better case

The following estimate of the signal-to-noise ratio is used when the interest is to maximize
the response while the variation is minimum, Taguchi treats this case in the same fashion
as the smaller the better case but uses the reciprocal, 1/y. Hence, the estimate of the
signal-to-noise ratio is given by

ŜNRL = −10 log10

(
1

n

n∑
i=1

1

y2
i

)
, (3.4)

where n denotes the number of replications per run.

3.4 Asymptotic Distributions of the Estimates of Signal-

to-noise Ratios

In order to conduct the tests of hypothesis for pairwise comparisons of signal-to-noise ratios,
it is important to know the distributions of the estimates of signal-to-noise ratios. The
multivariate Delta theorem (DasGupta (2008)) is applied for determining the asymptotic
distributions of the estimates of signal-to-noise ratios.

3.4.1 Case of the estimate of the signal-to-noise ratio for the nominal-
the-best case

Result 3.1 Asymptotic distribution of ŜNRT

Let y1, y2, . . . , yn be realizations of iid random variables Y1, Y2, . . . , Yn normally distributed
with mean µ and variance σ2. Then the estimate of the signal-to-noise ratio for the nominal-

the-best case, ŜNRT , is asymptotically distributed as normal with mean µ
ŜNRT

=
(

10

ln10

)
ln
(
µ2

σ2

)
and variance σ2

ŜNRT

=
(

10
ln10

)2
(

4σ2

n2µ2 + 2
n2

)
.

Proof
The estimate of the signal-to-noise ratio for the nominal-the-best case, say ŜNRT , can be
written as

ŜNRT = 10 log10

(
ȳ2

s2

)
=

(
10

ln10

)
ln

(
ȳ2

s2

)
. (3.5)

Let θ = (µ, σ2) be the vector of unknown parameters of the normal population such that

the vector θ̂ = (ȳ, s2) is its estimator. We recall that the variance-covariance matrix of θ̂ is
given by

V ar(θ̂) =

(
σ2

n
0

0 2σ4

n

)
. (3.6)
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Let f : R→ R be a bivariate function such that

f(θ) = f(µ, σ2) = ln

(
µ2

σ2

)
. (3.7)

The corresponding partial derivatives respect to µ and σ2 are, respectively,

∂f(θ)

∂µ
=

∂

∂µ
ln

(
µ2

σ2

)
=

2

µ
and

∂f(θ)

∂σ2
=

∂

∂σ2
ln

(
µ2

σ2

)
= − 1

σ2
. (3.8)

The gradient vector is

∇f(θ) =

(
2
µ

− 1
σ2

)
. (3.9)

Applying the multivariate Delta theorem leads to

√
n

[
ln

(
ȳ2

s2

)
− ln

(
µ2

σ2

)]
a∼ N

(
0,

(
2
µ

− 1
σ2

)T ( σ2

n
0

0 2σ4

n

)(
2
µ

− 1
σ2

))
(3.10)

i.e.,
√
n

[
ln

(
ȳ2

s2

)
− ln

(
µ2

σ2

)]
a∼ N

(
0,

4σ2

nµ2
+

2

n

)
(3.11)

or equivalently

ln

(
ȳ2

s2

)
a∼ N

(
ln

(
µ2

σ2

)
,

4σ2

n2µ2
+

2

n2

)
. (3.12)

It follows that

ŜNRT
a∼
(

10

ln10

)
N

(
ln

(
µ2

σ2

)
,

4σ2

n2µ2
+

2

n2

)
, (3.13)

where
a∼ stands for asymptotically.

Therefore, the estimate of the signal-to-noise ratio is asymptotical distributed as normal,
this is,

ŜNRT
a∼ N(µ

ŜNRT
, σ2

ŜNRT

), (3.14)

where

µ
ŜNRT

=

(
10

ln10

)
ln

(
µ2

σ2

)
and (3.15)

σ2

ŜNRT

=

(
10

ln10

)2(
4σ2

n2µ2
+

2

n2

)
�
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3.4.2 Case of the estimate of the signal-to-noise ratio for the smaller-
the-better case

Let ŜNRS1 and ŜNRS2 be the signal-to-noise ratios calculated from the samples y1 and y2,
respectively. The corresponding population signal-to-noise ratios are SNRS1 and SNRS2 ,
respectively. The hypotheses to be tested are

H0 : SNRS1 = SNRS2 vs H1 : SNRS1 6= SNRS2 (3.16)

or equivalently

H0 : SNRS1 − SNRS2 = 0 vs H1 : SNRS1 − SNRS2 6= 0. (3.17)

Result 3.2 Mean and standard deviation of ŜNRS1 − ŜNRS2

Let y1 = y11, y12, . . . , y1n1 and y2 = y21, y22, . . . , y2n2 be two independent samples of sizes n1

and n2, respectively, drawn from two independent normal populations with mean µi and vari-
ance σ2

i , i = 1, 2. Under H0, the mean and standard deviation of ŜNRS1− ŜNRS2 are asymp-

totically zero and
(−10
ln10

)√ σ2
1

n2
1(σ2

1+µ2
1)

2 +
8µ2

1σ
4
1

n2
1(σ2

1+µ2
1)

2 +
σ2

2

n2
2(σ2

2+µ2
2)

2 +
8µ2

2σ
4
2

n2
2(σ2

2+µ2
2)

2 , respectively.

Proof
In fact,

µ
ŜNRS1

−ŜNRS2

= µ
ŜNRS1

− µ
ŜNRS2

=

(
−10

ln10

)
ln(σ2

1 + µ2
1)−

(
−10

ln10

)
ln(σ2

2 + µ2
2) (3.18)

= SNRS1 − SNRS2 = 0.

The standard deviation of the di�erence of ŜNRS1 and ŜNRS2 , say σŜNRS1
−ŜNRS2

, is determined

as follows:

σ
ŜNRS1

−ŜNRS2

=
√
σ2

ŜNRS1

+ σ2

ŜNRS2

(3.19)

=

√(
−10

ln10

)2 [(
σ2

1

n2
1 (σ2

1 + µ2
1)

2 +
8µ2

1σ
4
1

n2
1 (σ2

1 + µ2
1)

2

)
+

(
σ2

2

n2 (σ2
2 + µ2

2)
2 +

8µ2
2σ

4
2

n2
2 (σ2

2 + µ2
2)

2

)]

=

(
−10

ln10

)√
σ2

1

n2
1 (σ2

1 + µ2
1)

2 +
8µ2

1σ
4
1

n2
1 (σ2

1 + µ2
1)

2 +
σ2

2

n2
2 (σ2

2 + µ2
2)

2 +
8µ2

2σ
4
2

n2
2 (σ2

2 + µ2
2)

2 �
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3.4.3 Case of the estimate of the signal-to-noise ratio for the larger-
the-better case

Result 3.3 Asymptotic distribution of ŜNRL

Let y1, y2, . . . , yn be realizations of iid random variables Y1, Y2, . . . , Yn normally distributed
with mean µ and variance σ2. Then, the estimate of the signal-to-noise ratio for the smaller-

the-better case, ŜNRL, is asymptotically distributed as normal with mean

µ
ŜNRL

=
(−10
ln10

)
ln(σ2 + µ2) and variance σ2

ŜNRL

=
(−10
ln10

)2
(

σ2

n2(σ2+µ2)2 + 8µ2σ4

n2(σ2+µ2)2

)
.

Proof

We recall that the original samples are

Sample 1: y1 = y11, y12, . . . , y1n1 and Sample 2: y2 = y21, y22, . . . , y2n2 .

Let x1 = 1
y1

and x2 = 1
y2

so that the new samples are

New sample 1: x1 = x11, x12, . . . , x1n1 and New sample 2: x2 = x21, x22, . . . , x2n2 .

The estimate of the signal-to-noise ratio, ŜNRL, can be written as

ŜNRL = −10 log10

(
1

n

n∑
i=1

x2
i

)
= −10 log10

(
E(x2)

)
= −10 log10

(
s2 + x̄2

)
(3.20)

=

(
−10

ln10

)
ln
(
s2 + x̄2

)
.

Following stepwise the same logic as in the case of signal-to-noise ratio for the smaller-the-
better situation, we get

ŜNRL
a∼ N(µ

ŜNRL
, σ2

ŜNRL

), (3.21)

where

µ
ŜNRL

=

(
−10

ln10

)
ln(σ2 + µ2) and (3.22)

σ2

ŜNRL

=

(
−10

ln10

)2(
σ2

n2 (σ2 + µ2)2 +
8µ2σ4

n2 (σ2 + µ2)2

)
�

3.5 Proposed Approach for Comparing Groups Using the

SNR

Multiple comparisons of treatments is one of the most importants topics in designed ex-
periments. In the literature, the concept of multiple comparisons of treatments based on
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signal-to-noise ratios is not studied. In this section, exploiting the properties of asymptotic
normality and the Central Limit Theorem (Lehman and Romano (2005), Casella and Berger
(2002)), we present a statistical test for pairwise comparisons of the values of signal-to-noise
ratio. We begin by considering two independent normal populations with mean µi and vari-
ance σ2

i , i = 1, 2. Let SNR1 and SNR2 represent the corresponding signal-to-noise ratios.
Suppose that y1 and y2 are two independent samples of sizes n1 and n2, respectively, drawn
from these two populations such that

Sample 1: y1 = y11, y12, . . . , y1n1 and Sample 2: y2 = y21, y22, . . . , y2n2 .

The corresponding estimates of signal-to-noise ratios are ŜNR1 and ŜNR2, respectively. It is
desired to test the hypothesis

H0 : SNR1 = SNR2 against H1 : SNR1 6= SNR2 (3.23)

or equivalently,

H0 : SNR1 − SNR2 = 0 against H1 : SNR1 − SNR2 6= 0. (3.24)

3.5.1 Proposed statistical test for pairwise comparisons of signal-
to-noise ratios for the nominal-the-best case

In the situation where the response variable is of the nominal-the-best type, the hypotheses
to be tested are

H0 : SNRT1 = SNRT2 vs H1 : SNRT1 6= SNRT2 (3.25)

or equivalently,

H0 : SNRT1 − SNRT2 = 0 vs H1 : SNRT1 − SNRT2 6= 0. (3.26)

Result 3.4 Mean and standard deviation of ŜNRT1 − ŜNRT2

Let y1 = y11, y12, . . . , y1n1 and y2 = y21, y22, . . . , y2n2 be two independent samples of sizes
n1 and n2, respectively, drawn from two independent normal populations with mean µi and
variance σ2

i , i = 1, 2. Under H0, the mean and standard deviation of ŜNRT1 − ŜNRT2 are

asymptotically zero and
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Proof
In fact,
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= µ
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= SNRT1 − SNRT2 = 0. (3.27)
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The standard deviation of the di�erence of ŜNRT1 and ŜNRT2 , say σŜNRT1
−ŜNRT2

, is determined

as follows:

σ
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Result 3.5 Statistical test for comparing SNRT1 and SNRT2

The statistical test for comparing SNRT1 and SNRT2 in the case µ1, µ2, σ1 and σ2 are known is
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ȳ2
2
s22

)
√

4σ2
1

n2
1µ

2
1

+ 2

n2
1

+
4σ2

2
n2

2µ
2
2

+ 2

n2
2

, and the statistical test becomes t =
ln

(
ȳ2
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when µ1, µ2, σ1

and σ2 are unknown.

Proof
The statistical test in case µ1, µ2, σ1 and σ2 are known is given by

z =

(
ŜNRT1 − ŜNRT2

)
− (SNRT1 − SNRT2)

σ
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−ŜNRT2

, (3.30)

and the statistical test when µ1, µ2, σ1 and σ2 are unknown is

t =

(
ŜNRT1 − ŜNRT2

)
− (SNRT1 − SNRT2)

σ̂
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−ŜNRT2

. (3.31)

Under H0, SNRT1 − SNRT2 = 0, and these statistics reduce to the following expressions.
The statistical test in case µ1, µ2, σ1 and σ2 are known is given by
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ȳ2
1

s21

)
− ln

(
ȳ2
2

s22

)
√

4σ2
1

n2
1µ

2
1

+ 2
n2

1
+

4σ2
2

n2
2µ

2
2

+ 2
n2

2

. (3.32)

33



3.5. Proposed Approach for Comparing Groups Using the SNR

The statistical test when µ1, µ2, σ1 and σ2 are unknown is
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Under H0, z
a∼ N(0, 1) and t

a∼ tn1+n2−2 , where ν = n1 + n2 − 2 represents the degrees of
freedom of the t distribution. The null hypothesis, H0, is rejected if |z| > zα/2 or |t| > tα/2,ν ,
where zα/2 is the α/2 quantile of the standard normal distribution and tα/2,ν is the α/2
quantile of the t distribution with ν degrees of freedom.

3.5.2 Proposed statistical test for pairwise comparisons of signal-
to-noise ratios for the smaller-the-better case

Result 3.6 Statistical test for comparing SNRS1 and SNRS2

The statistical test for comparing SNRS1 and SNRS2 in the case µ1, µ2, σ1 and σ2 are known

is z =
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2)
2 +

8ȳ2
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2)
2

, when µ1, µ2, σ1 and σ2 are unknown.

Proof

The statistical test in case µ1, µ2, σ1 and σ2 are known is given by

z =

(
ŜNRS1 − ŜNRS2

)
− (SNRS1 − SNRS2)

σ
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−ŜNRS2

, (3.34)

and the statistical test when µ1, µ2, σ1 and σ2 are unknown is

t =

(
ŜNRS1 − ŜNRS2

)
− (SNRS1 − SNRS2)
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. (3.35)
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Under H0, SNRS1−SNRS2 = 0, and the statistical tests are reduced into the following forms.
The statistical test in case µ1, µ2, σ1 and σ2 are known is given by
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The statistical test when µ1, µ2, σ1 and σ2 are unknown is
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As mentioned before, under H0, z
a∼ N(0, 1) and t

a∼ tn1+n2−2 , where ν = n1 + n2 − 2
represents the degrees of freedom of the t distribution. The null hypothesis, H0, is rejected
if |z| > zα/2 or |t| > tα/2,ν , where zα/2 is the α/2 quantile of the standard normal distribution
and tα/2,ν is the α/2 quantile of the t distribution with ν degrees of freedom.

3.5.3 Proposed statistical test for pairwise comparisons of signal-
to-noise ratios for the larger-the-better case

Let ŜNRL1 and ŜNRL2 be the estimates of the signal-to-noise ratios calculated from the
transformed samples x1 and x2 respectively. The corresponding population signal-to-noise
ratios are SNRL1 and SNRL2 , respectively. The hypotheses to be tested are

H0 : SNRL1 = SNRL2 vs H1 : SNRL1 6= SNRL2 (3.38)
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or equivalently

H0 : SNRL1 − SNRL2 = 0 vs H1 : SNRL1 − SNRL2 6= 0. (3.39)

Result 3.7 Mean and standard deviation of ŜNRL1 − ŜNRL2

Let y1 = y11, y12, . . . , y1n1 and y2 = y21, y22, . . . , y2n2 be two independent samples of sizes n1

and n2, respectively, drawn from two independent normal populations with mean µi and vari-
ance σ2

i , i = 1, 2. Under H0, the mean and standard deviation of ŜNRL1− ŜNRL2 are asymp-
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Proof

By analogy to the case of the smaller-the-better situation, under H0, the mean of the di�er-

ence of ŜNRL1 and ŜNRL2 is asymptotically zero.
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Result 3.8 Statistical test for comparing SNRL1 and SNRL2

The statistical test for comparing SNRL1 and SNRL2 in the case µ1, µ2, σ1 and σ2 are known
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, when µ1, µ2, σ1 and σ2 are unknown.

Proof

The statistical test in case µ1, µ2, σ1 and σ2 are known is given by
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and the statistical test when µ1, µ2, σ1 and σ2 are unknown is
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Under H0, SNRL1 − SNRL2 = 0. Therefore, the statistical test in case µ1, µ2, σ1 and σ2 are
known is given by
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The statistical test when µ1, µ2, σ1 and σ2 are unknown is
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Under H0, z
a∼ N(0, 1) and t

a∼ tn1+n2−2 , where ν = n1 + n2 − 2 represents the degrees of
freedom of the t distribution. The null hypothesis, H0, is rejected if |z| > zα/2 or |t| > tα/2,ν ,
where zα/2 is the α/2 quantile of the standard normal distribution and tα/2,ν is the α/2
quantile of the t distribution with ν degrees of freedom.

3.6 Monte Carlo Study of Properties of Proposed Tests

Monte Carlo simulations are performed to evaluate the performance of the proposed statis-
tical tests in terms of test sizes and powers. Sample means and sample variances are used
to determine the estimates of signal-to-noise ratios. Simulation under H0, this is, simulation
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with equal population parameters (µX = µY and σX = σY ) permit estimating the test
size. Under H1, simulations are conducted after applying an increment ∆ to the population
parameters. Simulations with di�erent values of population parameters give the estimates
of power tests.

3.6.1 Procedure for Monte Carlo simulation

Simulation process has been conducted according to the following procedure:

1. From two independent normal populations, X and Y , such that X ∼ N(µX , σ
2
X) and

Y ∼ N(µY , σ
2
Y ), simulate two independent samples of sizes nX = nY = 10.

2. Calculate sample means and sample variances; X̄, Ȳ , s2
X and s2

Y .

3. Calculate the estimates of signal-to-noise ratios; ŜNRX and ŜNRY .

4. Based on asymptotic normality of the estimates of signal-to-noise ratio, simulate
MC = 10000 replicates of

ŜNRX
a∼ N

(
µ
ŜNRX

, σ2

ŜNRX

)
and

ŜNRY
a∼ N

(
µ
ŜNRY

, σ2

ŜNRY

)
.

Four di�erent con�gurations of sample sizes are used: n = 10, 20, 30, 60. These sample
sizes are generated using the function u+ ei, u = 4, i = 1, 2, 3, 4 rounded to the nearest
multiple of 10.

5. For each replicate, conduct a t test for the null hypothesis H0 : SNRX − SNRY = 0,
and count the number of rejections (#Rejections).

6. Determine the rejection rate:
#Rejections

MC
.

The parameters used in Step 1 are determined by applying an increment ∆ according to the
following scheme:

1. Simultaneous change of population means and population variances. Population pa-
rameters are determined as follows:
µY = µX + ∆µ, σY = σX + ∆σ,
∆µ and ∆σ are increments in population mean and population variance, respectively.

2. Changing population means and maintaining population variances at constant values.
Population parameters are determined as follows:
µY = µX + ∆µ, σX = σY .
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Table 3.1: Estimated Type I error rates of t test for various sample sizes.

Sample size SNRT SNRS SNRL

10 0.0499 0.0538 0.0499

20 0.0500 0.0462 0.0500

30 0.0498 0.0494 0.0498

60 0.0496 0.0510 0.0496

3. Changing population variances and maintaining population means at constant values.
Population parameters are determined as follows:
σY = σX + ∆σ, µX = µY .

Four di�erent con�gurations of increments are used: ∆ = 0.001, 0.01, 0.1, 1.
Increment ∆ = 0 implies equal parameters.

Table 3.1 shows the estimated sizes of the test statistics for all three cases of signal-to-noise
ratio. The population parameters used are µX = µY = 35, σX = σY = 2. The row entries
represent the proportion of times H0 was rejected at α = 0.05 under H0, this is, the propor-
tion of times H0 is wrongly rejected. Regardless of the types of response variable, these are,
the nominal-the-best, the smaller-the-better and the larger-the-better, the test size is very
close to the signi�cance level. Moreover, it seems that the sample size does not a�ect the
value of the test size.

Table 3.2 contains the estimated powers obtained in changing the population means and pop-
ulation variances simultaneously. In this case, the population parameters used in simulations
are:

µY = µX + ∆µ, σY = σX + ∆σ.

The row entries represent the proportion of times H0 is rejected at α = 0.05 under H1, this
is, the proportion of times H0 is correctly rejected.

Table 3.3 contains the estimated powers, obtained in changing the population means and
maintaining population variances at constant values. In this case,

µY = µX + ∆µ, σX = σY .

The row entries represent the proportion of times H0 is rejected at α = 0.05 under H1.
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3.6. Monte Carlo Study of Properties of Proposed Tests

Table 3.2: Estimated powers of t test for various sample sizes and various increments,

changing the population means and population variances simultaneously.

(a) Signal-to-noise ratio for the nominal-the-best case

∆µ = 0.001 ∆µ = 0.01 ∆µ = 0.1 ∆µ = 1

Sample size ∆σ = 0.001 ∆σ = 0.01 ∆σ = 0.1 ∆σ = 1

10 0.0503 0.0799 0.9990 1

20 0.0589 0.8642 1 1

30 0.1365 1 1 1

60 0.9981 1 1 1

(b) Signal-to-noise ratio for the smaller-the-better case

∆µ = 0.001 ∆µ = 0.01 ∆µ = 0.1 ∆µ = 1

Sample size ∆σ = 0.001 ∆σ = 0.01 ∆σ = 0.1 ∆σ = 1

10 0.0532 0.0622 0.7140 1

20 0.0486 0.3666 1 1

30 0.0760 0.9950 1 1

60 0.7392 1 1 1

(c) Signal-to-noise ratio for the larger-the-better case

∆µ = 0.001 ∆µ = 0.01 ∆µ = 0.1 ∆µ = 1

Sample size ∆σ = 0.001 ∆σ = 0.01 ∆σ = 0.1 ∆σ = 1

10 0.0498 0.0589 0.7177 1

20 0.0524 0.3690 1 1

30 0.0755 0.9950 1 1

60 0.7412 1 1 1

40



3.6. Monte Carlo Study of Properties of Proposed Tests

Table 3.3: Estimated powers of t test for various sample sizes and various increments, ob-

tained in changing the population means and maintaining population variance

at constant values.

(a) Signal-to-noise ratio for the nominal-the-best case

Sample size ∆µ = 0.001 ∆µ = 0.01 ∆µ = 0.1 ∆µ = 1

10 0.0499 0.0504 0.0622 1

20 0.0497 0.0549 0.4549 1

30 0.0503 0.0800 0.9996 1

60 0.0596 0.08449 1 1

(b) Signal-to-noise ratio for the smaller-the-better case

Sample size ∆µ = 0.001 ∆µ = 0.01 ∆µ = 0.1 ∆µ = 1

10 0.0532 0.0616 0.7594 1

20 0.04876 0.3436 1 1

30 0.0738 0.9908 1 1

60 0.6956 1 1 1

(c) Signal-to-noise ratio for the larger-the-better case

Sample size ∆µ = 0.001 ∆µ = 0.01 ∆µ = 0.1 ∆µ = 1

10 0.0500 0.0581 0.7613 1

20 0.0517 0.3437 1 1

30 0.0732 0.9912 1 1

60 0.6922 1.0000 1 1
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3.6. Monte Carlo Study of Properties of Proposed Tests

Table 3.4 contains the estimated powers, obtained in changing the population variances and
maintaining population means at a constant value. In this case,

µX = µY , σY = σX + ∆σ.

The row entries represent the proportion of times H0 was rejected at α = 0.05 under H1.

Table 3.4: Estimated powers of t test for various sample sizes and various increments,

obtained in changing the population variancess and maintaining population

means at constant values.

(a) Signal-to-noise ratio for the nominal-the-best case

Sample size ∆σ = 0.001 ∆σ = 0.01 ∆σ = 0.1 ∆σ = 1

10 0.0499 0.0841 0.9997 1

20 0.0602 0.9000 1 1

30 0.1471 1 1 1

60 0.9995 1 1 1

(b) Signal-to-noise ratio for the smaller-the-better case

Sample size ∆σ = 0.001 ∆σ = 0.01 ∆σ = 0.1 ∆σ = 1

10 0.0524 0.0531 0.0561 0.0845

20 0.0547 0.0548 0.1298 0.8457

30 0.0515 0.0563 0.6348 1

60 0.0531 0.2881 1 1

(c) Signal-to-noise ratio for the larger-the-better case

Sample size ∆σ = 0.001 ∆σ = 0.01 ∆σ = 0.1 ∆σ = 1

10 0.0497 0.0500 0.0504 0.0820

20 0.0497 0.0498 0.1288 0.8486

30 0.0500 0.0557 0.6311 1

60 0.0522 0.2831 1 1

Results in Tables 3.2, 3.3 and 3.4 show that the estimated powers of t test increase as the
increments increase. E�ects of sample sizes to the estimated powers of t test are apparent.
For the same value of increment in the population parameters, the proposed test detects a
signi�cance di�erence between two values of signal-to-noise ratios, with high power, if the
corresponding sample size is also high.
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3.7. Real examples

3.7 Real examples

3.7.1 Example 1 (Signal-to-noise ratio for the nominal-the-best case)

We revisit the problem of a robust design conducted on a chemical process (Lawson (2010)).
The target value is set at T = 7.6 for convenience. Complete data are in Table A.3. The
data obtained for the �rst two runs of the experiment are in Table 3.5.

Table 3.5: Mean and variance values for the �rst two runs of the chemical process.

z1 1 -1 -1 1

Experiment x1 x2 x3 z2 -1 -1 1 1 Mean Variance

1 −1 −1 0 57.81 37.29 42.87 47.07 46.26 75.34

2 1 −1 0 24.89 4.35 8.23 14.69 13.04 80.60

We compare the signal-to-noise ratio of the �rst two experiments. Conducting the required
calculations leads to the results summarized in Table 3.6.

Table 3.6: Results for the test H0 : SNRT1 = SNRT2 .

ŜNRT1
ŜNRT2

σ̂
ŜNRT1−ŜNRT2

t tα/2,ν

14.53 3.24 2.67 4.23 2.45

As t = 4.23 > tα/2,ν = 2.45, we conclude that SNRT1 and SNRT2 are statistically di�erent at
the level of signi�cance α = 0.05.

3.7.2 Example 2 (Signal-to-noise ratio for the smaller-the-better
case)

We revisit the problem of a robust design conducted on a chemical process (Lawson (2010))
and consider its original version where the objective was to minimize the proportion of
impurities in the �nal product. Complete data are in Table A.4. Table 3.7 presents the data
obtained for the �rst two runs of the experiment.

Table 3.7: Proportion of impurities for the �rst two runs of the chemical process.

z1 1 -1 -1 1

Experiment x1 x2 x3 z2 -1 -1 1 1

1 −1 −1 0 57.81 37.29 42.87 47.07

2 1 −1 0 24.89 4.35 8.23 14.69
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3.7. Real examples

After calculations, we get the following results.

Table 3.8: Results for the test H0 : SNRS1 = SNRS2 .

ŜNRS1 ŜNRS2 σ̂
ŜNRS1

−ŜNRS2
t tα/2,ν

-33.45 -23.99 13.75 -0.688 2.45

As |t| = 0.688 < tα/2,ν = 2.45, one concludes that SNRS1 and SNRS2 are not statistically
di�erent at the level of signi�cance α = 0.05.

3.7.3 Example 3 (Signal-to-noise for the larger-the-better case)

We use the data of a designed experiment for the optimization of transesteri�cation of rape-
seed oil (Kim and Yim (2010)). The yields of rapeseed methyl ester, as biodiesel, prepared
under two sets of experimental conditions are shown in Table A.5, and the corresponding
reciprocal observations are in Table A.6. All experiments were performed with three repe-
titions, under the same experimental conditions (e.g., molar ratio of alcohol to oil, catalyst
type, catalyst concentration and reaction temperature). Table 3.9a and Table 3.9b give the
data for the �rst two runs and the corresponding reciprocals, respectively.

Table 3.9: Yields of rapeseed methyl ester.

(a) Data for the �rst two runs of Yields of rapeseed methyl ester

Run Sample 1 Sample 2 Sample 3
1 52.1 76.7 84.4
2 72.5 91.4 90.3

(Kim and Yim (2010))

(b) Reciprocal values

Run Sample 1 Sample 2 Sample 3
1 0.0192 0.0130 0.0118

2 0.0138 0.0109 0.0111

After calculations, we get the following results.

Table 3.10: Results for the test H0 : SNRL1 = SNRL2

ŜNRL1
ŜNRL2

σ̂
ŜNRL1−ŜNRL2

t tα/2,ν

36.37 38.39 29.69 -0.068 2.78
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3.8. Conclusions

As |t| = 0.068 < tα/2,ν = 2.78, one concludes that SNRL1 and SNRL2 are not statistically
di�erent at the level of signi�cance α = 0.05.

3.8 Conclusions

A brief review of the combined array design is provided and the related metric know as
signal-to-noise ratio is presented. Based on multivariate Delta theorem, the asymptotic
distributions of signal-to-noise ratios are determined. Considering the main classes of possible
responses, we propose a statistical test for pairwise comparisons of treatments with regard
to the signal-to-noise ratio. The correction to this pairwise comparisons can be done using
the Bonferroni inequality as stated by Chang (2008). The correction consists in applying the
adjusted level of signi�cance and adjusted p−value. Illustrative examples based on simulation
and on real data are presented. The values of the estimated test sizes are displayed by Table
3.1. Tables 3.2, 3.3, and 3.4 display the values of the estimated test powers, according to the
three scenarions presented in the paragraph on Procedure for Monte Carlo simulation. The
statistical test we propose preserves the test size when simulations are conducted under H0

and has excelent powers when simulations are conducted under H1.
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Chapter 4

General conclusions

In this thesis, we provide a methodology for conducting robust designs and analyse the data
obtained from the design. The general assumption in robust design is that there are two
types of factors: the design factors which are controlled by the experimenter, and the noise
factors which are di�cult to control. As the noise factors are responsible for the variability
which a�ects the quality characteristic of the process, the aim of robust design is to achieve
insensitivity to noise factors. This consists of bringing the quality characteristic to the tar-
get, while simultaneously minimizing its variance and the cost of the process.

The experimental designs we present in this thesis are the Taguchi approach commonly
known as double orthogonal array design or crossed-array design, and combined array de-
sign. The Taguchi approach consists of a double orthogonal array design, one for the design
factors and another for the noise factors. The combined array design puts both types of fac-
tors in one design. This design permits the analysis of interactions between the designs and
noise factors, and reduces the number of runs required to conduct an experiment. The data
analysis in combined array design consists of adjusting a regression model in terms of design
factors and noise factors. From this adjusted model, two response surfaces are obtained, one
for the mean of the quality characteristic, and another for its variance.

As the aim of robust designs is to make the process insentive or less sensitive to the e�ects
of noise factors, the problem reduces to determining the optimal settings of control designs
so that the e�ects of noise factors on the process are minimized. We solve the optimization
problems that arise from this procedure using the Mean square error criterion and Desirabil-
ity function.

In practice, it is common to observe a multidimentional quality characteristic. This thesis
presents a desirability function based on mean square error criterion for handling multiple
responses in robust design.

We illustrate the double orthogonal array design with an example. The data consists of an
application of robust design conducted on a chemical process, as presented by Lawson (1990)
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4. General conclusions

and Lawson (2010). The objective of the application is to conduct a designed experiment in
order to obtain the operating conditions that improve the process. The improvement consists
of the reduction of the proportion of impurities in the product, and the minimization of the
cost. We use the quality loss function in order to evaluate the cost caused by the deviation
from the target value of the quality characteristic.

To illustrate the combined array design, we use the desirability function based on mean
square error criterion. We analyse the data presented by Romano et al. (2004) and Köksoy
(2006). The problem is a robust design conducted on the elastic element of a force trans-
ducer. The main objective of the design is to determine the optimal conditions for lozenge
angle, bore diameter and half-length of the vertical segment, here stated as control factors, so
that the e�ects of the deviation of the lozenge angle from its target value, and the deviation
of the bore diameter from its nominal value, both considered as noise factors, are insensitive
to two response variables, these are, the non-linearity and hysteres. We seek to achieve a
target value of 1 for the non-linearity and minimize the hysteresis.

One of the contributions of Taguchi to robust design is the use of the metric known as
Signal-to-Noise Ratio. This metric takes into account the mean of the quality characteristic
and its variance. Multiple comparison is one of the topics with utmost importance in any
designed experiment. In this thesis, we propose a statistical test for pairwise comparisons
of experiments. This statistical test exploites the asymptotic normality of the estimates of
signal-to-noise ratios, and uses the Central limit theorem to derive its asymptotic distribu-
tion. Simulated examples and real examples are given. Simulated examples show that the
test size is close to the signi�cance level (α) when simulations are conducted under H0, this
is, considering equal population parameters. Moreover, simulations under H1 also show that
the proposed statistical tests have good powers.

This thesis is a contribution to robust designed experiments, but still, there is a room for
further improvement. Future research may concern multiple comparisons of treatments based
on signal-to-noise ratio. Moreover, even though robust designs have been extensively applied
in various areas, analytical studies of statistical properties of parameter estimates are not
deeply studied. Hence, this is another interesting topic for our future research. It is also
interesting to include, in our future research, the analysis of categorical response variables,
and the concept of censored observations.
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Appendix A

Data

A.1 Data for the chemical process problem

Table A.1: Data for the chemical process problem

(a) Coded and real levels

Levels

Design factors −1 0 1
x1 180 210 240

x2 25 30 35

x3 12 15 18

Noise factors −1 1
z1 10 20

z2 30 40

(b) Experimental results of the chemical process

z1 1 -1 -1 1

Experiment x1 x2 x3 z2 -1 -1 1 1 Mean ln(s2)

1 −1 −1 0 57.81 37.29 42.87 47.07 46.26 4.32
2 1 −1 0 24.89 4.35 8.23 14.69 13.04 4.39
3 −1 1 0 13.21 9.51 10.10 11.19 11.00 0.97
4 1 1 0 13.29 9.15 10.30 11.23 10.99 1.17
5 −1 0 −1 27.71 20.24 22.28 24.23 23.62 2.31
6 1 0 −1 11.40 4.48 5.44 8.23 7.39 2.27
7 −1 0 1 30.65 18.40 20.24 24.45 23.44 3.39
8 1 0 1 14.94 2.29 4.30 8.49 7.51 3.44
9 0 −1 −1 42.68 22.42 21.64 30.30 29.26 4.56
10 0 1 −1 13.56 10.08 9.85 11.38 11.22 1.06
11 0 −1 1 50.60 13.19 18.84 30.97 28.40 5.61
12 0 1 1 15.21 7.44 9.78 11.82 11.06 2.38
13 0 0 0 19.62 12.29 13.14 14.54 14.90 2.38
14 0 0 0 20.60 11.49 12.06 13.49 14.41 2.88
15 0 0 0 20.15 12.20 14.06 13.89 15.08 2.50

Source: Lawson (2010)
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A.2. Data for the elastic element problem

A.2 Data for the elastic element problem

Table A.2: Data for the elastic element problem

(a) Coded and real levels

Levels

Design factors −1 0 1
x1 15 30 45
x2 8 11 14
x3 7 9 11

Noise factors −1 0 1
z1 −1.5 0 1.5
z2 −0.25 0 0.25

(b) Experimental results of the elastic element problem

Treatment x1 x2 x3 z1 z2 y1 y2

1 -1 -1 -1 -1 1 1.810 1.10

2 -1 -1 -1 1 -1 1.690 1.11

3 -1 -1 1 -1 -1 1.900 1.07

4 -1 -1 1 1 1 1.780 1.07

5 -1 1 -1 -1 -1 1.800 1.47

6 -1 1 -1 1 1 1.630 1.18

7 -1 1 1 -1 1 1.920 1.41

8 -1 1 1 1 -1 1.780 1.58

9 1 -1 -1 -1 -1 1.360 1.57

10 1 -1 -1 1 1 1.220 2.03

11 1 -1 1 -1 1 1.480 1.38

12 1 -1 1 1 -1 1.440 1.68

13 1 1 -1 -1 1 0.693 3.37

14 1 1 -1 1 -1 0.616 3.75

15 1 1 1 -1 -1 0.950 2.81

16 1 1 1 1 1 0.817 2.83

17 -1 0 0 0 0 1.790 1.24

18 1 0 0 0 0 1.030 2.46

19 0 -1 0 0 0 1.530 1.23

20 0 1 0 0 0 1.220 1.73

21 0 0 -1 0 0 1.300 1.63

22 0 0 1 0 0 1.440 1.67

23 0 0 0 0 0 1.380 1.73

24 0 0 0 0 0 1.390 1.74

25 0 0 0 0 0 1.400 1.74

Source: Romano et al. (2004)
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A.3. Chemical process problem and values of ̂SNRT

A.3 Chemical process problem and values of ŜNRT

Table A.3: Chemical process problem and values of ŜNRT

z1 1 -1 -1 1

Experiment x1 x2 x3 z2 -1 -1 1 1 Mean Variance ŜNRT

1 −1 −1 0 57.81 37.29 42.87 47.07 46.26 75.34 14.53

2 1 −1 0 24.89 4.35 8.23 14.69 13.04 80.60 3.24

3 −1 1 0 13.21 9.51 10.10 11.19 11.00 2.65 16.60

4 1 1 0 13.29 9.15 10.30 11.23 10.99 3.23 15.73

5 −1 0 −1 27.71 20.24 22.28 24.23 23.62 10.11 17.42

6 1 0 −1 11.40 4.48 5.44 8.23 7.39 9.69 7.51

7 −1 0 1 30.65 18.40 20.24 24.45 23.44 29.55 12.69

8 1 0 1 14.94 2.29 4.30 8.49 7.51 31.24 2.57

9 0 −1 −1 42.68 22.42 21.64 30.30 29.26 95.34 9.53

10 0 1 −1 13.56 10.08 9.85 11.38 11.22 2.89 16.39

11 0 −1 1 50.60 13.19 18.84 30.97 28.40 274.06 4.69

12 0 1 1 15.21 7.44 9.78 11.82 11.06 10.85 10.52

13 0 0 0 19.62 12.29 13.14 14.54 14.90 10.77 13.14

14 0 0 0 20.60 11.49 12.06 13.49 14.41 17.74 10.68

15 0 0 0 20.15 12.20 14.06 13.89 15.08 12.15 12.72

A.4 Chemical process problem and values of ŜNRS

Table A.4: Chemical process problem and values of ŜNRS

z1 1 -1 -1 1

Experiment x1 x2 x3 z2 -1 -1 1 1 ŜNRS

1 −1 −1 0 57.81 37.29 42.87 47.07 -33.45

2 1 −1 0 24.89 4.35 8.23 14.69 -23.99

3 −1 1 0 13.21 9.51 10.10 11.19 -20.92

4 1 1 0 13.29 9.15 10.30 11.23 -20.96

5 −1 0 −1 27.71 20.24 22.28 24.23 -27.54

6 1 0 −1 11.40 4.48 5.44 8.23 -18.08

7 −1 0 1 30.65 18.40 20.24 24.45 -27.62

8 1 0 1 14.94 2.29 4.30 8.49 -19.42

9 0 −1 −1 42.68 22.42 21.64 30.30 -29.78

10 0 1 −1 13.56 10.08 9.85 11.38 -21.10

11 0 −1 1 50.60 13.19 18.84 30.97 -30.34

12 0 1 1 15.21 7.44 9.78 11.82 -21.25

13 0 0 0 19.62 12.29 13.14 14.54 -23.67

14 0 0 0 20.60 11.49 12.06 13.49 -23.53

15 0 0 0 20.15 12.20 14.06 13.89 -23.79
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A.5 Yields of rapeseed methyl ester

Table A.5: Yields of rapeseed methyl ester

Run Sample 1 Sample 2 Sample 3

1 52.1 76.7 84.4

2 72.5 91.4 90.3

3 74.5 94.6 91.5

4 71.0 87.2 85.5

5 69.0 90.2 91.5

6 51.5 83.8 78.2

7 69.7 88.2 85.4

8 63.5 81.9 80.5

9 65.1 79.8 84.4

A.6 Reciprocal values of Yields of rapeseed methyl ester

and values of ŜNRL

Table A.6: Reciprocal values of Yields of rapeseed methyl ester and values of ŜNRL

Run Sample 1 Sample 2 Sample 3 ŜNRL

1 0.0192 0.0130 0.0118 36.37

2 0.0138 0.0109 0.0111 38.39

3 0.0134 0.0106 0.0109 38.61

4 0.0141 0.0115 0.0117 38.05

5 0.0145 0.0111 0.0109 38.18

6 0.0194 0.0119 0.0128 36.33

7 0.0143 0.0113 0.0117 38.03

8 0.0157 0.0122 0.0124 37.34

9 0.0154 0.0125 0.0118 37.48
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Appendix B

Calculations

B.1 Estimated mean models: Chapter 2, Example 3

Êz(y(1)(x, z))

=Êz(1.377− 0.361x1 − 0.155x2 + 0.077x3 + 0.042x2
1 + 0.007x2

2 + 0.002x2
3 − 0.148x1x2

+ 0.022x1x3 + 0.013x2x3 − 0.059z1 − 0.012z2 + 0.010x1z1 − 0.008x1z2 − 0.006x2z1

+ 0.001x2z2 + 0.005x3z1 + 0.003x3z2)

=Êz(1.377− 0.361x1 − 0.155x2 + 0.077x3 + 0.042x2
1 + 0.007x2

2 + 0.002x2
3 − 0.148x1x2

+ 0.022x1x3 + 0.013x2x3) + Êz(−0.059z1 − 0.012z2 + 0.010x1z1 − 0.008x1z2

− 0.006x2z1 + 0.001x2z2 + 0.005x3z1 + 0.003x3z2)

=Êz(1.377− 0.361x1 − 0.155x2 + 0.077x3 + 0.042x2
1 + 0.007x2

2 + 0.002x2
3 − 0.148x1x2

+ 0.022x1x3 + 0.013x2x3)

=1.377− 0.361x1 − 0.155x2 + 0.077x3 + 0.042x2
1 + 0.007x2

2 + 0.002x2
3 − 0.148x1x2

+ 0.022x1x3 + 0.013x2x3.
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Êz

(
y(2)(x, z)

)
=Êz(1.660 + 0.592x1 + 0.438x2 − 0.095x3 + 0.247x2

1 − 0.123x2
2 + 0.047x2

3 + 0.301x1x2

− 0.143x1x3 − 0.033x2x3 + 0.066z1 − 0.042z2 + 0.079x1z1 + 0.017x1z2 − 0.031x2z1

− 0.061x2z2 − 0.004x3z1 − 0.014x3z2)

=Êz(1.660 + 0.592x1 + 0.438x2 − 0.095x3 + 0.247x2
1 − 0.123x2

2 + 0.047x2
3 + 0.301x1x2

− 0.143x1x3 − 0.033x2x3) + Êz(0.066z1 − 0.042z2 + 0.079x1z1 + 0.017x1z2 − 0.031x2z1

− 0.061x2z2 − 0.004x3z1 − 0.014x3z2)

=Êz(1.660 + 0.592x1 + 0.438x2 − 0.095x3 + 0.247x2
1 − 0.123x2

2 + 0.047x2
3 + 0.301x1x2

− 0.143x1x3 − 0.033x2x3)

=1.660 + 0.592x1 + 0.438x2 − 0.095x3 + 0.247x2
1 − 0.123x2

2 + 0.047x2
3 + 0.301x1x2

− 0.143x1x3 − 0.033x2x3.

B.2 Estimated variance models: Chapter 2, Example 3

V̂ arz
(
y(1)(x, z)

)
=

(
γ̂(1)

T

+ xT∆̂(1)

)
Ω

(
γ̂(1) + ∆̂(1)

T

x

)
+ σ̂2

ε(1)

=

( −0.059 −0.012
)

+
(
x1 x2 x3

) 0.010 −0.008
−0.006 0.001
0.005 0.003

( 1 0
0 1

)
( −0.059
−0.012

)
+

(
0.010 −0.006 0.005
−0.008 0.001 0.003

) x1

x2

x3

+ 0.0003

=3.625× 10−3 − 9.88× 10−4x1 + 6.84× 10−4x2 − 6.62× 10−4x3 + 1.64× 10−4x2
1

+ 3.7× 10−5x2
2 + 3.4× 10−5x2

3 − 1.36× 10−4x1x2 + 5.2× 10−5x1x3

− 5.4× 10−5x2x3 + 0.0003

=3.925× 10−3 − 9.88× 10−4x1 + 6.84× 10−4x2 − 6.62× 10−4x3 + 1.64× 10−4x2
1

+ 3.7× 10−5x2
2 + 3.4× 10−5x2

3 − 1.36× 10−4x1x2 + 5.2× 10−5x1x3

− 5.4× 10−5x2x3.
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V̂ arz
(
y(2)(x, z)

)
=

(
γ̂(2)

T

+ xT∆̂(2)

)
Ω

(
γ̂(2) + ∆̂(2)

T

x

)
+ σ̂2

ε(2)

=

( 0.066 −0.042
)

+
(
x1 x2 x3

) 0.079 0.017
−0.031 −0.061
−0.004 −0.014

( 1 0
0 1

)
( 0.066
−0.042

)
+

(
0.079 −0.031 −0.004
0.017 −0.061 −0.014

) x1

x2

x3

+ 0.037

=0.00612 + 0.009x1 + 1.032× 10−3x2 + 6.48× 10−4x3 + 0.00653x2
1

+ 4.682× 10−3x2
2 + 2.12× 10−4x2

3 − 6.972× 10−3x1x2 − 1.108× 10−4x1x3

+ 1.956x2x3 + 0.037

=0.04312 + 0.009x1 + 1.032× 10−3x2 + 6.48× 10−4x3 + 0.00653x2
1

+ 4.682× 10−3x2
2 + 2.12× 10−4x2

3 − 6.972× 10−3x1x2 − 1.108× 10−4x1x3

+ 1.956x2x3.
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Appendix C

Graphs

C.1 Graphs for the chemical process problem
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C. Graphs

C.2 Graphs for the elastic element of force transducer

problem
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C.3 Distribution of ŜNR1 − ŜNR2
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Appendix D

R Codes

D.1 R Code for MSE Analysis (Chemical process prob-

lem)

########################### PART 1 #############################################
################################################################################
# This R Code determines x_opt and the corresponding MSE.
# The proportion of impurities and its variance are obtained
# by introducing x_opt in the adjusted models for Y_Mean and Y_Var.
################################################################################
rm(list=ls())
library("nloptr")
x0 <- c( 0, 0, 0 )
fn <- function(x) (14.80 - 8.17 * x[1] - 9.09 * x[2] - 0.14 * x[3]

+ 0.52 * x[1]^2 + 8.30 * x[1] * x[2] + 0.07 * x[1] * x[3]
+ 5.01 * x[2]^2 + 0.18 * x[2] * x[3] + 0.18 * x[3]^2 )^2
+(exp(2.59 + 0.03 * x[1] - 1.66 * x[2] + 0.58 * x[3]
- 0.21 * x[1]^2 + 0.03 * x[1] * x[2] + 0.02 * x[1] * x[3]
+ 0.34 * x[2]^2 + 0.07 * x[2] * x[3] + 0.48 * x[3]^2))

hin <- function(x) c( x[1] + 1, x[2] + 1, x[3] + 1, -x[1] + 1, -x[2] + 1,
-x[3] + 1)
gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
auglag(x0, fn, gr = NULL, hin = hin, localsolver = "SLSQP")
################################### x_opt ####################################
x1 = 1.00000000
x2 = 0.1640518
x3 = -0.3217378
###############################################################################
MeanPred <- (14.80 - 8.17 * x1 - 9.09 * x2 - 0.14 * x3 + 0.52 * x1^2

+ 8.30 * x1 * x2 + 0.07 * x1 * x3 + 5.01 * x2^2
+ 0.18 * x2 * x3 + 0.18 * x3^2)

VariancePred <- (exp(2.59 + 0.03 * x1 - 1.66 * x2 + 0.58 * x3 - 0.21 * x1^2
+ 0.03 * x1 * x2 + 0.02 * x1 * x3 + 0.34 * x2^2 + 0.07 * x2 * x3

+ 0.48 * x3^2))
MSE_DOAD <- ((14.80 - 8.17 * x1 - 9.09 * x2 - 0.14 * x3 + 0.52 * x1^2
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+ 8.30 * x1 * x2 + 0.07 * x1 * x3 + 5.01 * x2^2 + 0.18 * x2 * x3
+ 0.18 * x3^2)^2 + (exp(2.59 + 0.03 * x1 - 1.66 * x2 + 0.58 * x3

- 0.21 * x1^2 + 0.03 * x1 * x2 + 0.02 * x1 * x3 + 0.34 * x2^2
+ 0.07 * x2 * x3 + 0.48 * x3^2)))

print(MeanPred, digits = 3)
print(VariancePred, digits = 3)
print(MSE_DOAD, digits = 3)
######################## END PART 1 ############################################

########################### PART 2 #############################################
################################################################################
# This R Code graphs the Contour plot and Perspective plot
# for the proportion of impurities (Mean), its variance and the
# corresponding MSE
################################################################################

# Contour and perspective plots- Mean ##########################################
################################ x_1 fixed #####################################
par(oma = c(0, 0, 2, 0))
par(mfrow = c(1, 2))
par(mar = c(4.1, 4.1, 2.1, 1.1))
x_1 <- 1
x_2 <- seq(-1, 1, len = 100)
x_3 <- seq(-1, 1, len = 100)
f <- outer(x_3, x_2, function(x_3,x_2) 14.80 - 8.17 * x_1 - 9.09 * x_2
- 0.14 * x_3 + 0.52 * x_1^2 + 8.30 * x_1 * x_2 + 0.07 * x_1 * x_3 + 5.01 * x_2^2
+ 0.18 * x_2 * x_3 + 0.18 * x_3^2)
contour(x_3, x_2, f, levels = c(13, 11, 10.5, 10, 8, 7.5, 7.15, 7.11),
xlab = expression(x[3]), ylab = expression(x[2]), main = "x1 fixed",col = "blue")
arrows(0.5, -0.10, 0.12839, 0.07654, length = 0.1, pch = 2, lwd=3)
text(0.5, -0.13, "7.11", cex = 1.2, col = "red")
arrows(-0.5, -0.9, -1,-1, length=0.1, pch = 2, lwd=3)
text(-0.35, -0.9, "46.5", cex=1.2, col = "red")

par(mar = c(3.1, 0.1, 2.1, 0.1))
y <- function(x_3, x_2){ 14.80 - 8.17 * x_1 - 9.09 * x_2 - 0.14 * x_3
+ 0.52 * x_1^2 + 8.30 * x_1 * x_2 + 0.07 * x_1 * x_3
+ 5.01 * x_2^2 + 0.18 * x_2 * x_3 + 0.18 * x_3^2}
f <- outer(x_3, x_2, y)
persp(x_3, x_2, f, theta = -35, phi = 25, col = rainbow(50),
xlab = expression(x_3), ylab = expression(x_2),
zlab =expression(Mean), main = "x1 fixed")
title(main = "Contour and Perspective plots (Mean)", sub = "Nothing",
col.main="blue", outer = T)
################################################################################
# Contour and perspective plots- Variance ######################################
################################ x_1 fixed #####################################
par(oma = c(0, 0, 2, 0))
par(mfrow = c(1, 2))
par(mar = c(4.1, 4.1, 2.1, 1.1))
x_1 <- -1
x_2 <- seq(-1, 1, len = 100)
x_3 <- seq(-1, 1, len = 100)
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f <- outer(x_3, x_2, function(x_3, x_2) exp(2.59 + 0.03 * x_1 - 1.66 * x_2
+ 0.58 * x_3 - 0.21 * x_1^2 + 0.03 * x_1 * x_2 + 0.02 * x_1 * x_3
+ 0.34 * x_2^2 + 0.07 * x_2 * x_3 + 0.48 * x_3^2))
contour(x_3, x_2, f, levels = c(79.04, 35, 15, 10, 5, 3, 2.6),
xlab = expression(x[3]), ylab = expression(x[2]), main= "x1 fixed",
col = "blue")
arrows(-0.2, 0.7, -0.65625,1, length = 0.1, pch = 2, lwd = 3)
text(-0.2, 0.63, "2.21", cex = 1.2, col = "red")
arrows(-0.7, -0.8, -1,-1, length = 0.1, pch = 2, lwd=3)
text(-0.54, -0.8, "79.04", cex = 1.2, col = "red")

par(mar=c(3.1,1.9,2.1,0.1))
y<-function(x_3,x_2){ 13.55 + 0.89 * x_1 - 63.22 * x_2 + 28.46 * x_3
- 24.37 * x_1^2 - 1.17 * x_1 * x_2 + 0.53 * x_1 * x_3 + 51.27 * x_2^2
- 42.69 * x_2 * x_3 + 30.96 * x_3^2}

f <- outer(x_3, x_2 ,y)
persp(x_3, x_2, f, theta = -30, phi = 10,col = rainbow(50),
xlab = expression(x_3), ylab = expression(x_2), zlab = expression(Variance),
main = "x1 fixed")
title(main = "Contour and Perspective plots (Variance)", sub = "Nothing",
col.main = "blue", outer = T)
################################################################################
#Contour and perspective plots- MSE ############################################
################################ x_1 fixed #####################################
par(oma = c(0, 0, 2, 0))
par(mfrow = c(1, 2))
par(mar = c(4.1, 4.1, 2.1, 1.1))
x_1 <- 1
x_2 <- seq(-1, 1,len = 100)
x_3 <- seq(-1, 1,len = 100)
f<-outer(x_3, x_2, function(x_3, x_2) (14.80 - 8.17 * x_1 - 9.09 * x_2
- 0.14 * x_3 + 0.52 * x_1^2 + 8.30 * x_1 * x_2 + 0.07 * x_1 * x_3
+ 5.01 * x_2^2 + 0.18 * x_2 * x_3 + 0.18 * x_3^2)^2
+ (exp(2.59 + 0.03 * x_1 - 1.66 * x_2 + 0.58 * x_3 - 0.21 * x_1^2
+ 0.03 * x_1 * x_2 + 0.02 * x_1 * x_3 + 0.34 * x_2^2 + 0.07 * x_2 * x_3
+ 0.48 * x_3^2)))
contour(x_3, x_2, f, levels = c(300, 200, 150, 120, 110, 100, 75, 59.3, 59.1),
xlab = expression(x[3]), ylab = expression(x[2]), main = "x1 fixed",
col = "blue")
arrows(0.3, 0, -0.32174, 0.16405, length = 0.1, pch = 2, lwd = 3)
text(0.5, 0, "59.1", cex = 1.2, col = "red")

par(mar = c(3.1, 0.1, 2.1, 0.1))
y <- function(x_3, x_2){ (14.80 - 8.17 * x_1 - 9.09 * x_2 - 0.14 * x_3
+ 0.52 * x_1^2 + 8.30 * x_1 * x_2 + 0.07 * x_1 * x_3 + 5.01 * x_2^2
+ 0.18 * x_2 * x_3 + 0.18 * x_3^2)^2+(exp(2.59 + 0.03 * x_1 - 1.66 * x_2
+ 0.58 * x_3 - 0.21 * x_1^2 + 0.03 * x_1 * x_2 + 0.02 * x_1 * x_3
+ 0.34 * x_2^2 + 0.07 * x_2 * x_3 + 0.48 * x_3^2))}
f <- outer(x_3, x_2, y)
persp(x_3, x_2, f, theta = -55, phi = 20,col = rainbow(50),
xlab = expression(x_3), ylab = expression(x_2),
zlab =expression(MSE), main = "x1 fixed")
title(main = "Contour and Perspective plots (MSE)", sub = "Nothing",
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col.main="blue", outer = T)
########################### END PART 2 #########################################

D.2 R Code for Desirability Analysis (Chemical process

problem)

############################ PART 1: INDIVIDUAL OPTIMIZATION ##################
################################################################################
# This R Code determines x_min and x_max in order to obtain the lower bounds and
# upper bounds to be applied in determining individual desirability functions
# for the mean model and variance model of the response variable, i.e.,
# "the proportion of impurities"
################################################################################
####################### DETERMINING "x_min" ###################################
############################### MINIMIZING " MEAN " ############################
rm(list=ls())
library("nloptr")
x0 <- c( 0, 0, 0)
fn <- function(x) (14.80 - 8.17 * x[1] - 9.09 * x[2] - 0.14 * x[3]
+ 0.52 * x[1]^2 + 8.30 * x[1] * x[2] + 0.07 * x[1] * x[3]

+ 5.01 * x[2]^2 + 0.18 * x[2] * x[3] + 0.18 * x[3]^2 )
hin <- function(x) c( x[1] + 1, x[2] + 1, x[3] + 1, -x[1] + 1, -x[2] + 1,
-x[3] + 1)
gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
auglag(x0, fn, gr = NULL, hin = hin, localsolver = "SLSQP")
################################################################################
############################### MINIMIZING " VARIANCE " ########################
rm(list=ls())
library("nloptr")
x0 <- c( 0, 0, 0 )
fn <- function(x) (exp(2.59 + 0.03 * x[1] - 1.66 * x[2] + 0.58 * x[3]
- 0.21 * x[1]^2 + 0.03 * x[1] * x[2] + 0.02 * x[1] * x[3]

+ 0.34 * x[2]^2 + 0.07 * x[2] * x[3] + 0.48 * x[3]^2) )
hin <- function(x) c( x[1] + 1, x[2] + 1, x[3] + 1, -x[1] + 1, -x[2] + 1,
-x[3] + 1)
gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
auglag(x0, fn, gr = NULL, hin = hin, localsolver = "SLSQP")
###############################################################################
##################### DETERMINING "x_max" ####################################
############################### MAXIMIZING " MEAN " ###########################
rm(list=ls())
library("nloptr")
x0 <- c( -1, -1, -1)
fn <- function(x) ( -(14.80 - 8.17 * x[1] - 9.09 * x[2] - 0.14 * x[3]
+ 0.52 * x[1]^2 + 8.30 * x[1] * x[2] + 0.07 * x[1] * x[3]
+ 5.01 * x[2]^2 + 0.18 * x[2] * x[3] + 0.18 * x[3]^2) )
hin <- function(x) c( x[1] + 1, x[2] + 1, x[3] + 1, -x[1] + 1, -x[2] + 1,
-x[3] + 1)
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gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
auglag(x0, fn, gr = NULL, hin = hin, localsolver = "SLSQP")
#############################################################################
############################ MAXIMIZING " VARIANCE " ########################
rm(list=ls())
library("nloptr")
x0 <- c( -1, -1, -1)
fn <- function(x) ( -(exp(2.59 + 0.03 * x[1] - 1.66 * x[2] + 0.58 * x[3]
- 0.21 * x[1]^2 + 0.03 * x[1] * x[2] + 0.02 * x[1] * x[3]
+ 0.34 * x[2]^2 + 0.07 * x[2] * x[3] + 0.48 * x[3]^2)) )
hin <- function(x) c( x[1] + 1, x[2] + 1, x[3] + 1, -x[1] + 1, -x[2] + 1,
-x[3] + 1)
gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
auglag(x0, fn, gr = NULL, hin = hin, localsolver = "SLSQP")
##################### END PART 1 ############################################

######################## PART 2: DESIRABILITY ANALYSIS ######################
#############################################################################
# This R Code determines x_opt and the corresponding Overall DF
# The proportion of impurities, its variance and the estimate of MSE are
# obtained by introducing x_opt in the adjusted models for
# Y_Mean , Y_Var and Y_MSE
##############################################################################
# install.packages("desirability") # Install this package if not

# already installed
library(desirability)
### Fitted Quadratic Response Surface Models
MeanPred <- function(x) (14.80 - 8.17 * x[1] - 9.09 * x[2] - 0.14 * x[3]

+ 0.52 * x[1]^2 + 8.30 * x[1] * x[2] + 0.07 * x[1] * x[3]
+ 5.01 * x[2]^2 + 0.18 * x[2] * x[3] + 0.18 * x[3]^2)

VariancePred <- function(x) (exp(2.59 + 0.03 * x[1] - 1.66 * x[2] + 0.58 * x[3]
- 0.21 * x[1]^2 + 0.03 * x[1] * x[2] + 0.02 * x[1] * x[3]
+ 0.34 * x[2]^2 + 0.07 * x[2] * x[3] + 0.48 * x[3]^2))

#### Defining individual desirability functions
MeanD <- dMin(7.11, 46.5)
VarianceD <- dMin(2.21, 79.04)
### Maximizing Desirability
########################################### The penalty approach
rsmOpt <- function(x, dObject, space = "square")
{
impurity <- MeanPred(x)
variability <- VariancePred(x)
out <- predict(dObject, data.frame(impurity = impurity, variability = variability))
if(space == "circular")
{
if(sqrt(sum(x^2)) > 1) out <- 0
} else if(space == "square") if(any(abs(x) > 1)) out <- 0
out
}

########################################## The Nelder-Mead simplex method
searchGrid <- expand.grid(Reaction_Temperature = seq(-1, 1, length = 5),
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Catalyst_Concentration = seq(-1, 1, length = 5) ,
Reagent_B = seq(-1, 1, length = 5))

for(i in 1:dim(searchGrid)[1])
{
tmp <- optim(as.vector(searchGrid[i,]), rsmOpt, dObject = overallD,

space = "square", control = list(fnscale = -1))
if(i == 1)
{
best <- tmp
} else {
if(tmp$value > best$value)
best <- tmp
}
}
print(best,digits = 5)

####################### x_opt ##################################################
x1 = 1.0000
x2 = 0.43189
x3 = -0.57353
####################### Estimated Values #######################################
##### for MEAN, VARIANCE and MSE
MeanPred <- (14.80 - 8.17 * x1 - 9.09 * x2 - 0.14 * x3 + 0.52 * x1^2

+ 8.30 * x1 * x2 + 0.07 * x1 * x3 + 5.01 * x2^2 + 0.18 * x2 * x3
+ 0.18 * x3^2)

VariancePred <- (exp(2.59 + 0.03 * x1 - 1.66 * x2 + 0.58 * x3 - 0.21 * x1^2
+ 0.03 * x1 * x2 + 0.02 * x1 * x3 + 0.34 * x2^2 + 0.07 * x2 * x3
+ 0.48 * x3^2))

MSE_DOAD <- ((14.80 - 8.17 * x1 - 9.09 * x2 - 0.14 * x3 + 0.52 * x1^2
+ 8.30 * x1 * x2 + 0.07 * x1 * x3 + 5.01 * x2^2 + 0.18 * x2 * x3
+ 0.18 * x3^2)^2 +(exp(2.59 + 0.03 * x1 - 1.66 * x2 + 0.58 * x3

- 0.21 * x1^2 + 0.03 * x1 * x2 + 0.02 * x1 * x3 + 0.34 * x2^2
+ 0.07 * x2 * x3 + 0.48 * x3^2)))

print(MeanPred,digits = 3)
print(VariancePred,digits = 3)
print(MSE_DOAD,digits = 3)
############################ END PART 2 ##########################################

############################ PART 3: GRAPHS ######################################
##################################################################################
# This R Code plots Individual Desirability Functions for the proportion
# of impurities (MEAN) and its variance
##################################################################################
par(oma = c(0, 0, 2, 0))
par(mfrow = c(1, 2))
################ MEAN ###########################################################
par(mar = c(4.3, 4.1, 2.1, 1.1))
MeanD1 <- dMin(7.11, 46.5)
plot(MeanD1, col = "blue", lwd = 2)
abline(v = 7.8, col = "magenta", lty = 11, lwd = 2)
abline(h = 0.97446, col = "magenta", lty = 11, lwd = 2)
text(40, .7, "MEAN", cex=1.2, col = "black")
arrows(20,0.85,7.8,0.97446, length=0.1, pch = 2, lwd=3)
text(30, 0.85, "(7.8,0.97446)", cex=1.2, col = "blue")
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############## VARIANCE ########################################################
par(mar = c(4.3, 2.1, 2.1, 1.1))
VarianceD1 <- dMin(2.21, 79.04)
plot(VarianceD1, col = "blue", lwd = 2)
abline(v = 4.79, col = "magenta", lty = 11, lwd = 2)
abline(h = 0.97446, col = "magenta", lty = 11, lwd = 2)
text(60, .7, "VARIANCE", cex = 1.2, col = "black")
arrows(20, 0.85, 4.79, 0.97446, length = 0.1, pch = 2, lwd = 3)
text(39, 0.85, "(4.79, 0.97446)", cex = 1.2, col = "blue")
title(main = "Desirability function plot", sub = "Nothing", col.main ="blue",
outer = T)
############################ END PART 3 ########################################

D.3 R Code for DF based on MSE criterion (Elastic ele-

ment problem)

############################## PART 1 ##########################################
################################################################################
# This R Code determines x_opt and the corresponding MSE for Non-linearity
# and Hysteresis. Estimated values for Non-linearity and its variance,
# Hysteresis and its variance, are obtained by plugging x_opt into the
# corresponding adjusted models
################################################################################
########################### MINIMIZING MSE FOR y_1
rm(list=ls())
library("nloptr")
x0 <- c( 1, 1, 1 )
fn <- function(x) (1.377 - 0.361 * x[1] - 0.155 * x[2] + 0.077 * x[3]
- 0.148 * x[1] * x[2] + 0.022 * x[1] * x[3] + 0.013 * x[2] * x[3]
+ 0.042 * x[1]^2 + 0.007 * x[2]^2 + 0.002 * x[3]^2 - 1)^2
+ (3.925*10^(-3) - 9.88 * 10^(-4) * x[1] + 6.84 * 10^(-4) * x[2]
- 6.62 * 10^(-4) * x[3] + 1.64 * 10^(-4) * x[1]^2 + 3.7 * 10^(-5) * x[2]^2
+ 3.4 * 10^(-5) * x[3]^2 - 1.36 * 10^(-4) * x[1] * x[2]
+ 5.2 * 10^(-5) * x[1] * x[3] - 5.4 * 10^(-5) * x[2] * x[3])
hin <- function(x) c( x[1] + 1, x[2] + 1, x[3] + 1, -x[1] + 1, -x[2] + 1,
-x[3] + 1)
gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
auglag(x0, fn, gr = NULL, hin = hin, localsolver = "SLSQP")
############################### x_opt #########################################
x1 = 1.0000000
x2 = 0.5523737
x3 = 1.0000000
####################### Estimated Values ######################################
###### MEAN, VARIANCE and MSE for y_1
NonlinearityPred <- (1.377 - 0.361 * x1 - 0.155 * x2 + 0.077 * x3
- 0.148 * x1 * x2 + 0.022 * x1 * x3 + 0.013 * x2 * x3
+ 0.042 * x1^2 + 0.007 * x2^2 + 0.002 * x3^2)
NonlinearityVariance <- (3.925 * 10^(-3)-9.88 * 10^(-4) * x1
+ 6.84 * 10^(-4) * x2 - 6.62 * 10^(-4) * x3 + 1.64 * 10^(-4) * x1^2
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+ 3.7 *10^(-5) * x2^2 + 3.4 * 10^(-5) * x3^2 - 1.36 * 10^(-4) * x1 * x2
+ 5.2 * 10^(-5) * x1 * x3 - 5.4 * 10^(-5) * x2 * x3)
NonlinearityMSE <- ((1.377 - 0.361 * x1 - 0.155 * x2 +0.077 * x3
- 0.148 * x1 * x2 + 0.022 * x1 * x3 + 0.013 * x2 * x3
+ 0.042 * x1^2 + 0.007 * x2^2 + 0.002 * x3^2 -1)^2
+( 3.925*10^(-3)-9.88*10^(-4)*x1+6.84*10^(-4)*x2
-6.62*10^(-4)*x3+1.64*10^(-4)*x1^2+3.7*10^(-5)*x2^2
+3.4*10^(-5)*x3^2-1.36*10^(-4)*x1*x2
+5.2*10^(-5)*x1*x3-5.4*10^(-5)*x2*x3))
print(NonlinearityPred, digits = 4)
print(NonlinearityVariance, digits = 4)
print(NonlinearityMSE, digits = 4)

########################### MAXIMIZING MSE FOR y_1
rm(list=ls())
library("nloptr")
x0 <- c( 0, 0, 0 )
fn <- function(x) -((1.377 - 0.361 * x[1] - 0.155 * x[2] + 0.077 * x[3]
- 0.148 * x[1] * x[2] + 0.022 * x[1] * x[3] + 0.013 * x[2] * x[3]
+ 0.042 * x[1]^2 + 0.007 * x[2]^2 + 0.002 * x[3]^2 - 1)^2
+ (3.925*10^(-3) - 9.88 * 10^(-4) * x[1] + 6.84 * 10^(-4) * x[2]
- 6.62 * 10^(-4) * x[3] + 1.64 * 10^(-4) * x[1]^2
+ 3.7 * 10^(-5) * x[2]^2 + 3.4 * 10^(-5) * x[3]^2
- 1.36 * 10^(-4) * x[1] * x[2] + 5.2 * 10^(-5) * x[1] * x[3]
- 5.4 * 10^(-5) * x[2] * x[3]))
hin <- function(x) c( x[1] + 1, x[2] + 1, x[3] + 1, -x[1] + 1, -x[2] + 1,
-x[3] + 1)
gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
auglag(x0, fn, gr = NULL, hin = hin, localsolver = "lbfgs")
############################### x_opt ##########################################
x1 = -1
x2 = 1
x3 = 1
####################### Estimated Values ######################################
###### MEAN, VARIANCE and MSE for y_1
NonlinearityPred <- (1.377 - 0.361 * x1 - 0.155 * x2 + 0.077 * x3
- 0.148 * x1 * x2 + 0.022 * x1 * x3 + 0.013 * x2 * x3 + 0.042 * x1^2
+ 0.007 * x2^2 + 0.002 * x3^2)
NonlinearityVariance <- (3.925 * 10^(-3)-9.88 * 10^(-4) * x1
+ 6.84 * 10^(-4) * x2 - 6.62 * 10^(-4) * x3 + 1.64 * 10^(-4) * x1^2
+ 3.7 *10^(-5) * x2^2 + 3.4 * 10^(-5) * x3^2 - 1.36 * 10^(-4) * x1 * x2
+ 5.2 * 10^(-5) * x1 * x3 - 5.4 * 10^(-5) * x2 * x3)
NonlinearityMSE <- ((1.377 - 0.361 * x1 - 0.155 * x2 +0.077 * x3
- 0.148 * x1 * x2 + 0.022 * x1 * x3 + 0.013 * x2 * x3 + 0.042 * x1^2
+ 0.007 * x2^2 + 0.002 * x3^2 -1)^2 +( 3.925 * 10^(-3) - 9.88 * 10^(-4) * x1
+ 6.84 * 10^(-4) * x2 - 6.62 * 10^(-4) * x3 + 1.64 * 10^(-4) * x1^2
+ 3.7 * 10^(-5) * x2^2 + 3.4 * 10^(-5) * x3^2 - 1.36 * 10^(-4) * x1 * x2
+ 5.2 * 10^(-5) * x1 * x3 - 5.4 * 10^(-5) * x2 * x3))
print(NonlinearityPred, digits = 4)
print(NonlinearityVariance, digits = 4)
print(NonlinearityMSE, digits = 4)
#################################### MINIMIZING MSE FOR y_2
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rm(list=ls())
library("nloptr")
x0 <- c( 0, 0, 0 )
fn <- function(x) (1.660 + 0.592 * x[1] + 0.438 * x[2] - 0.095 * x[3]
+ 0.301 * x[1] * x[2] - 0.143 * x[1] * x[3]
- 0.033 * x[2] * x[3] + 0.247 * x[1]^2 - 0.123 * x[2]^2
+ 0.047 * x[3]^2)^2 + (0.04312 + 0.009 * x[1]
+ 1.032 * 10^(-3) * x[2] + 6.48 * 10^(-4) * x[3]
+ 0.00653 * x[1]^2 + 4.682 * 10^(-3) * x[2]^2
+ 2.12 * 10^(-4) * x[3]^2 - 6.972 * 10^(-3) * x[1] * x[2]
- 1.108 * 10^(-4) * x[1] * x[3] + 1.956 * 10^(-3) * x[2] * x[3])
hin <- function(x) c( x[1] + 1, x[2] + 1, x[3] + 1, -x[1] + 1, -x[2] + 1,
-x[3] + 1)
gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
auglag(x0, fn, gr = NULL, hin = hin, localsolver = "lbfgs")
############################### x_opt #########################################
x1 = -0.7194638
x2 = -1.0000000
x3 = -0.4274953
####################### Estimated Values ######################################
###### MEAN, VARIANCE and MSE for y_2
HysteresisPred <- (1.660 + 0.592 * x1 + 0.438 * x2 -0.095 * x3 + 0.301 * x1 * x2
- 0.143 * x1 * x3 - 0.033 * x2 * x3 + 0.247 * x1^2 - 0.123 * x2^2 + 0.047 * x3^2)
HysteresisVariance <- (0.04312 + 0.009 * x1 + 1.032 * 10^(-3) * x2
+ 6.48 * 10^(-4) * x3 + 0.00653 * x1^2 + 4.682 * 10^(-3) * x2^2
+ 2.12 * 10^(-4) * x3^2 - 6.972 * 10^(-3) * x1 * x2 - 1.108 * 10^(-4) * x1 * x3
+ 1.956 * 10^(-3) * x2 * x3)
HysteresisMSE <- ((1.660 + 0.592 * x1 + 0.438 * x2 - 0.095 * x3 + 0.301 * x1 * x2
- 0.143 * x1 * x3 - 0.033 * x2 * x3 + 0.247 * x1^2 - 0.123 * x2^2 + 0.047 * x3^2)^2
+ (0.04312 + 0.009 * x1 + 1.032 * 10^(-3) * x2 + 6.48 * 10^(-4) * x3
+ 0.00653 * x1^2 + 4.682 * 10^(-3) * x2^2 + 2.12 * 10^(-4) * x3^2 - 6.972 * 10^(-3)
* x1 * x2 - 1.108 * 10^(-4) * x1 * x3 + 1.956 * 10^(-3) * x2 * x3))
print(HysteresisPred, digits = 3)
print(HysteresisVariance, digits = 3)
print(HysteresisMSE, digits = 3)
########################### MAXIMIZING MSE FOR y_2
rm(list=ls())
library("nloptr")
x0 <- c( 1, 1, 1 )
fn <- function(x) -((1.660 + 0.592 * x[1] + 0.438 * x[2] - 0.095 * x[3]
+ 0.301 * x[1] * x[2] - 0.143 * x[1] * x[3]
- 0.033 * x[2] * x[3] + 0.247 * x[1]^2 - 0.123 * x[2]^2
+ 0.047 * x[3]^2)^2 + (0.04312 + 0.009 * x[1]
+ 1.032 * 10^(-3) * x[2] + 6.48 * 10^(-4) * x[3]
+ 0.00653 * x[1]^2 + 4.682 * 10^(-3) * x[2]^2
+ 2.12 * 10^(-4) * x[3]^2 - 6.972 * 10^(-3) * x[1] * x[2]
- 1.108 * 10^(-4) * x[1] * x[3] + 1.956 * 10^(-3) * x[2] * x[3]))
hin <- function(x) c( x[1] + 1, x[2] + 1, x[3] + 1, -x[1] + 1, -x[2] + 1,
-x[3] + 1)
gr <- function(x) nl.grad(x, fn)
hinjac <- function(x) nl.jacobian(x, hin)
auglag(x0, fn, gr = NULL, hin = hin, localsolver = "lbfgs")

69



D.3. R Code for DF based on MSE criterion (Elastic element problem)

############################### x_opt #########################################
x1 = 1
x2 = 1
x3 = 1
####################### Estimated Values ######################################
###### MEAN, VARIANCE and MSE for y_2
HysteresisPred <- (1.660 + 0.592 * x1 + 0.438 * x2 -0.095 * x3 + 0.301 * x1 * x2
- 0.143 * x1 * x3 - 0.033 * x2 * x3 + 0.247 * x1^2 - 0.123 * x2^2 + 0.047 * x3^2)
HysteresisVariance <- (0.04312 + 0.009 * x1 + 1.032 * 10^(-3) * x2
+ 6.48 * 10^(-4) * x3 + 0.00653 * x1^2 + 4.682 * 10^(-3) * x2^2
+ 2.12 * 10^(-4) * x3^2 - 6.972 * 10^(-3) * x1 * x2 - 1.108 * 10^(-4) * x1 * x3
+ 1.956 * 10^(-3) * x2 * x3)
HysteresisMSE <- ((1.660 + 0.592 * x1 + 0.438 * x2 - 0.095 * x3 + 0.301 * x1 * x2
- 0.143 * x1 * x3 - 0.033 * x2 * x3 + 0.247 * x1^2 - 0.123 * x2^2 + 0.047 * x3^2)^2
+ (0.04312 + 0.009 * x1 + 1.032 * 10^(-3) * x2 + 6.48 * 10^(-4) * x3
+ 0.00653 * x1^2 + 4.682 * 10^(-3) * x2^2 + 2.12 * 10^(-4) * x3^2 - 6.972 * 10^(-3)
* x1 * x2 - 1.108 * 10^(-4) * x1 * x3 + 1.956 * 10^(-3) * x2 * x3))
print(HysteresisPred, digits = 3)
print(HysteresisVariance, digits = 3)
print(HysteresisMSE, digits = 3)
############################ END PART 1 ########################################

################################################################################
# This R Code graphs the Contour plot and Perspective plot
# for the Mean Square Error for Non-linearity and Hysteresis
################################################################################

############ PART 2: MSE FOR NON-LINEARITY ###################################
################################ x_2 fixed
par(oma = c(0, 0, 2, 0))
par(mfrow = c(1, 2))
par(mar = c(4.1, 4.1, 2.1, 1.1))
x_1 <- seq(-1, 1, len = 100)
x_2 <- -1
x_3 <- seq(-1, 1, len = 100)
f <- outer(x_1, x_3, function(x_1, x_3) (1.377 - 0.361 * x_1 - 0.155 * x_2

+0.077 * x_3 - 0.148 * x_1 * x_2 + 0.022 * x_1 * x_3 + 0.013 * x_2 * x_3
+ 0.042 * x_1^2 + 0.007 * x_2^2 + 0.002 * x_3^2 - 1)^2 +( 3.925 * 10^(-3)
-9.88 * 10^(-4) * x_1
+ 6.84 * 10^(-4) * x_2 - 6.62 * 10^(-4) * x_3 + 1.64 * 10^(-4) * x_1^2
+ 3.7 * 10^(-5) * x_2^2 + 3.4 * 10^(-5) * x_3^2 - 1.36 * 10^(-4) * x_1 * x_2
+ 5.2 * 10^(-5) * x_1* x_3 - 5.4 * 10^(-5) * x_2 * x_3))

contour(x_1, x_3, f,levels = c(0.005, 0.025, 0.05, 0.1, 0.158, 0.2, 0.3
, 0.4, 0.5, 0.6, 0.7),
xlab=expression(x[1]), ylab=expression(x[3]) ,main= "x2 fixed",col="blue")
arrows(0, -0.5, 0.38916,-0.98629, length = 0.1, pch = 2, lwd = 3)
text(0.1, -0.45, "0.158", cex = 1.2, col = "red")

par(mar=c(3.1,0.1,2.1,0.1))
y<-function(x_1,x_3){ (1.377 - 0.361 * x_1 - 0.155 * x_2 +0.077 * x_3
- 0.148 * x_1 * x_2 + 0.022 * x_1 * x_3 + 0.013 * x_2 * x_3 + 0.042 * x_1^2
+ 0.007 * x_2^2 + 0.002 * x_3^2 - 1)^2 +( 3.925 * 10^(-3)-9.88 * 10^(-4) * x_1
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+ 6.84 * 10^(-4) * x_2 - 6.62 * 10^(-4) * x_3 + 1.64 * 10^(-4) * x_1^2
+ 3.7 * 10^(-5) * x_2^2 + 3.4 * 10^(-5) * x_3^2 - 1.36 * 10^(-4) * x_1 * x_2
+ 5.2 * 10^(-5) * x_1* x_3 - 5.4 * 10^(-5) * x_2 * x_3)
}
f<-outer(x_1,x_3,y)
persp(x_1,x_3,f,theta =-40, phi = 20,col = rainbow(50), xlab = expression(x_1),
ylab = expression(x_3), zlab =expression(MSE) ,main= "x2 fixed")
title(main = "Contour and Perspective plots (MSE for Non-linearity)",
sub = "Nothing", col.main="blue", outer = T)
########################### END PART 2 ######################################

############ PART 3: MSE FOR HYSTERESIS ###################################
rm(list=ls())
#install.packages("rsm") # Install this package if not already installed
library("rsm")
#############################################################################
################################ x_2 fixed
par(oma = c(0, 0, 2, 0))
par(mfrow = c(1, 2))
par(mar = c(4.1, 4.1, 2.1, 1.1))
x_1 <- seq(-1,1,len=100)
x_2 <- -1
x_3 <- seq(-1,1,len=100)
f <- outer(x_1, x_3, function(x_1, x_3) (1.660 + 0.592 * x_1 + 0.438 * x_2
- 0.095 * x_3 + 0.301 * x_1 * x_2 - 0.143 * x_1 * x_3 - 0.033 * x_2 * x_3
+ 0.247 * x_1^2 - 0.123 * x_2^2 + 0.047 * x_3^2)^2 + (0.04312 + 0.009 * x_1
+ 1.032 * 10^(-3) * x_2 + 6.48 * 10^(-4) * x_3 + 0.00653 * x_1^2
+ 4.682 * 10^(-3)* x_2^2 + 2.12 * 10^(-4)* x_3^2 - 6.972 * 10^(-3) * x_1 * x_2
- 1.108 * 10^(-4) * x_1 * x_3 + 1.956 * 10^(-3) * x_2 * x_3))
contour(x_1, x_3, f,levels = c(1.06, 1.1, 1.15, 1.2, 1.3, 1.5, 1.75, 2.05, 3),

xlab = expression(x[1]), ylab = expression(x[3]) ,main = "x2 fixed",
col = "blue")
arrows(0, -0.5, 0.38916,-0.98629, length=0.1, pch = 2, lwd=3)
text(0.1, -0.45, "2.05", cex=1.2, col = "red")

par(mar=c(3.1,0.1,2.1,0.1))
y<-function(x_1,x_3){ (1.660 + 0.592 * x_1 + 0.438 * x_2 - 0.095 * x_3
+ 0.301 * x_1 * x_2 - 0.143 * x_1 * x_3 - 0.033 * x_2 * x_3 + 0.247 * x_1^2
- 0.123 * x_2^2 + 0.047 * x_3^2)^2 + (0.04312 + 0.009 * x_1 + 1.032 * 10^(-3) * x_2
+ 6.48 * 10^(-4) * x_3 + 0.00653 * x_1^2 + 4.682 * 10^(-3)* x_2^2 + 2.12 * 10^(-4)
* x_3^2 - 6.972 * 10^(-3) * x_1 * x_2 - 1.108 * 10^(-4) * x_1 * x_3
+ 1.956 * 10^(-3) * x_2 * x_3)
}
f<-outer(x_1,x_3,y)
persp(x_1,x_3,f,theta =-40, phi = 20,col = rainbow(50), xlab = expression(x_1),
ylab = expression(x_3), zlab =expression(MSE) ,main= "x2 fixed")
title(main = "Contour and Perspective plots (MSE for Hysteresis)", sub = "Nothing",
col.main="blue", outer = T)
########################### END PART 3 #########################################

########################### PART 4: DESIRABILITY ANALYSIS ######################
################################################################################
# This R Code determines x_opt and the corresponding Overall DF
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# Optimal values for Non-lineality and Hysteresis are obtained
# by introducing x_opt in their adjusted models
################################################################################
# install.packages("desirability") # Install this package if not

# already installed
library(desirability)
### Fitted Quadratic Response Surface Models
NonlinearityPred <- function(x) (1.377 - 0.361 * x[1] - 0.155 * x[2]
+ 0.077 * x[3] - 0.148 * x[1] * x[2] + 0.022 *x[1] * x[3] + 0.013 * x[2]
* x[3] + 0.042 * x[1]^2 + 0.007 * x[2]^2 + 0.002 * x[3]^2 - 1)^2 +
(3.925 * 10^(-3) - 9.88 * 10^(-4) * x[1] + 6.84 * 10^(-4) * x[2] - 6.62 * 10^(-4)
* x[3] + 1.64 * 10^(-4) * x[1]^2 + 3.7 * 10^(-5) * x[2]^2 + 3.4 * 10^(-5) * x[3]^2
- 1.36 * 10^(-4) * x[1] * x[2] + 5.2 * 10^(-5) * x[1] * x[3] - 5.4 * 10^(-5) * x[2]
* x[3])
HysteresisPred <- function(x) (1.660 + 0.592 * x[1] + 0.438 * x[2]
- 0.095 * x[3] + 0.301 * x[1] * x[2] - 0.143 *x[1] * x[3] - 0.033 * x[2] * x[3]
+ 0.247 * x[1]^2 - 0.123 * x[2]^2 + 0.047 * x[3]^2)^2 + (0.04312
+ 0.009 * x[1] + 1.032 * 10^(-3) * x[2] + 6.48 * 10^(-4 )* x[3]
+ 0.00653 * x[1]^2 + 4.682 * 10^(-3) * x[2]^2 + 2.12 * 10^(-4) * x[3]^2
- 6.972 * 10^(-3) * x[1] * x[2] - 1.108 * 10^(-4) * x[1] * x[3]
+ 1.956 * 10^(-3) * x[2] * x[3]) )
#### Defining individual desirability functions
NonlinearityD <- dMin(0.00281, 0.7277)
HysteresisD <- dMin(1.06, 8.42)
### Maximizing Desirability
########################################### The penalty approach
rsmOpt <- function(x, dObject, space = "square")
{
Nonlinearity <- NonlinearityPred(x)
Hysteresis <- HysteresisPred(x)

out <- predict(dObject, data.frame(Nonlinearity = Nonlinearity,
Hysteresis = Hysteresis))

if(space == "circular")
{
if(sqrt(sum(x^2)) > 1) out <- 0
} else if(space == "square") if(any(abs(x) > 1)) out <- 0
out
}

########################################## The Nelder-Mead simplex method
searchGrid <- expand.grid(LozengeAngle = seq(-1, 1, length = 5),
BoreDiameter = seq(-1, 1, length = 5),
HalfLength = seq(-1, 1, length = 5))
for(i in 1:dim(searchGrid)[1])
{
tmp <- optim(as.vector(searchGrid[i,]), rsmOpt, dObject = overallD,

space = "square", control = list(fnscale = -1))
if(i == 1)
{
best <- tmp
} else {
if(tmp$value > best$value)
best <- tmp
}
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}
print(best, digits = 7)

####################### x_opt ###############################################
x1 = 0.3891627
x2 = -1.0000000
x3 = -0.9862911
####################### Estimated Values ####################################
###### MEAN, VARIANCE and MSE for y_1
######
NonlinearityPred <- (1.377 - 0.361 * x1 - 0.155 * x2 + 0.077 * x3
- 0.148 * x1 * x2 + 0.022 * x1 * x3 + 0.013 * x2 * x3 + 0.042 * x1^2
+ 0.007 * x2^2 + 0.002 * x3^2)
NonlinearityVariance <- (3.925 * 10^(-3)-9.88 * 10^(-4) * x1 + 6.84 * 10^(-4)
* x2 - 6.62 * 10^(-4) * x3 + 1.64 * 10^(-4) * x1^2 + 3.7 *10^(-5) * x2^2
+ 3.4 * 10^(-5) * x3^2 - 1.36 * 10^(-4) * x1 * x2 + 5.2 * 10^(-5) * x1 * x3
- 5.4 * 10^(-5) * x2 * x3)
NonlinearityMSE <- ((1.377 - 0.361 * x1 - 0.155 * x2 +0.077 * x3
- 0.148 * x1 * x2 + 0.022 * x1 * x3 + 0.013 * x2 * x3
+ 0.042 * x1^2 + 0.007 * x2^2 + 0.002 * x3^2 - 1)^2 +
( 3.925 * 10^(-3) - 9.88 * 10^(-4) * x1 + 6.84 *10^(-4) * x2
- 6.62 * 10^(-4) * x3 + 1.64 * 10^(-4) * x1^2 + 3.7 * 10^(-5) * x2^2
+ 3.4 * 10^(-5) * x3^2 - 1.36 * 10^(-4) * x1 * x2 + 5.2 * 10^(-5) * x1 * x3
- 5.4 * 10^(-5) * x2 * x3))
print(NonlinearityPred, digits = 5)
print(NonlinearityVariance, digits = 5)
print(NonlinearityMSE, digits = 5)

###### MEAN, VARIANCE and MSE for y_2
#####
HysteresisPred <- (1.660 + 0.592 * x1 + 0.438 * x2 - 0.095 * x3
+ 0.301 * x1 * x2 - 0.143 * x1 * x3 -0.033 * x2 * x3
+ 0.247 *x1^2 - 0.123 * x2^2 + 0.047*x3^2)
HysteresisVariance <- (0.04312 + 0.009 * x1 + 1.032 * 10^(-3) * x2
+ 6.48 *10^(-4) * x3 + 0.00653 * x1^2 + 4.682 * 10^(-3) * x2^2
+ 2.12 * 10^(-4) * x3^2 - 6.972 * 10^(-3) * x1 * x2
- 1.108 * 10^(-4) * x1 * x3 + 1.956 * 10^(-3) * x2 * x3)
HysteresisMSE <- ((1.660 + 0.592 * x1 + 0.438 * x2 - 0.095 * x3
+ 0.301 * x1 * x2 - 0.143 * x1 * x3 -0.033 * x2 * x3
+ 0.247 * x1^2 - 0.123 * x2^2 + 0.047 * x3^2)^2

+ (0.04312 + 0.009 * x1 + 1.032 * 10^(-3) * x2
+ 6.48 *10^(-4) * x3 + 0.00653 * x1^2

+ 4.682 * 10^(-3) * x2^2 + 2.12 * 10^(-4) * x3^2
- 6.972 * 10^(-3) * x1 * x2 - 1.108 * 10^(-4) * x1 * x3
+ 1.956 * 10^(-3) * x2 * x3))
print(HysteresisPred, digits = 5)
print(HysteresisVariance, digits = 5)
print(HysteresisMSE, digits = 5)
############################ END PART 4 ####################################

###################### PART 5: DESIRABILITY GRAPHS #########################
############################################################################
# This R Code plots Individual Desirability Functions
# of MSE functions for Non-linearity and Hysteresis
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###########################################################################
par(mfrow=c(1,2))
################ MSE_Non_linearity
par(mar = c(4.3, 4.1, 2.1, 1.1))
Non_linearity_D <- dMin(0.04, 0.7277, scale = c(1))
plot(Non_linearity_D, col = "red", lwd = 3)
abline(v = 0.158, col = "magenta", lty = 11, lwd = 2)
abline(h = 0.82496, col = "magenta", lty = 11, lwd = 2)
text(.5, .97, "MSE for Non-linearity", cex = 1.2, col = "black")
arrows(0.3,0.75,0.158,0.82496, length = 0.1, pch = 2, lwd = 3)
text(0.5, 0.72, "(0.158,0.82496)", cex=1.2, col = "blue")
################ MSE_Hysteresis
par(mar = c(4.3, 2.1, 2.1, 1.1))
Hysteresis_D <- dMin(0.7, 8.42, scale = c(1))
plot(Hysteresis_D, col = "red",lwd=3)
abline(v = 2.05, col = "magenta", lty = 11, lwd = 2)
abline(h = 0.82496, col = "magenta", lty = 11, lwd = 2)
text(6, .97, "MSE for Hysteresis", cex =1.2, col = "black")
arrows(3.8,0.75,2.05,0.82496, length = 0.2, pch = 2, lwd = 3)
text(5.2, 0.72, "(2.05,0.82496)", cex = 1.2, col = "blue")
title(main = "Plot for the Desirability Function", sub = "Nothing",
col.main = "blue",
outer = T)
############################ END PART 5 ####################################

D.4 R Code for simulating SNR and determining powers

and test sizes

########################################################################
## This R Code determines test sizes when simulations are conducted
## H_0, this is, with equal parameters, otherwise determines powers
########################################################################
################# PARAMETERS ###########################################
rm(list = ls())
set.seed(10)
nx # Sample size for simulating samples from Normal population x
ny # Sample size for simulating samples from Normal population y
mu.x # Population mean of the Normal population x
mu.y # Population mean of the Normal population y
sig.x # Population standard deviation of the Normal population x
sig.y # Population standard deviation of the Normal population y
alpha # Test size
n.sim # Number of simulations
m # Rate of increment in determining various sample sizes
u # Starting value in determing various sample sizes for SNR
########################################################################
############################### PART 1: SNR_T ##########################
############ SIGNAL-TO-NOISE RATIO FOR THE NOMINAL-THE-BEST CASE #######
calc.pvalue.t <- function(nx, ny, sig.SNR.x, sig.SNR.y, mu.SNR.x.hat,
mu.SNR.y.hat, alpha){

x <- rnorm(nx, mu.x, sig.x)
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y <- rnorm(ny, mu.y, sig.y)

x.bar = mean(x)
x.sig.square = var(x)

y.bar = mean(y)
y.sig.square = var(y)

SNR.x.hat = 10 * log(x.bar^2/x.sig.square)
mu.SNR.x.hat = 10 * log(mu.x^2/sig.x^2)
sig.SNR.x.hat = (10/log(10))^2*((4 * sig.x^2)/(nx^2 * mu.x^2) + (2/nx^2))

SNR.y.hat = 10 * log(y.bar^2/y.sig.square)
mu.SNR.y.hat = 10 * log(mu.y^2/sig.y^2)
sig.SNR.y.hat = (10/log(10))^2*((4 * sig.y^2)/(ny^2 * mu.y^2) + (2/ny^2))

# n.SNR.x = nx
# n.SNR.y = ny
SNR.x.hat = rnorm(nx, mu.SNR.x.hat, sig.SNR.x.hat)
SNR.y.hat = rnorm(ny, mu.SNR.y.hat, sig.SNR.y.hat)

t_test = t.test(SNR.x.hat, SNR.y.hat, alternative = "two.sided",
paired = FALSE, conf.level = alpha)$p.value

if(t_test < alpha)(reject = 1) else(reject = 0)
return(reject)
}
calc.t<-function(nx, ny, mu.SNR.x.hat, mu.SNR.y.hat, sig.SNR.x, sig.SNR.y,
n.sim, alpha){
t_sum = 0
for (j in 1:n.sim){
t_temp = calc.pvalue.t(nx, ny, sig.SNR.x, sig.SNR.y, mu.SNR.x.hat,
mu.SNR.y.hat, alpha)
t_sum = t_temp + t_sum
}
p.value = t_sum/n.sim
return(p.value)
}
powers = matrix(NA,nrow = m, ncol = 2)
for (i in 1:m){
t.test.m = calc.t(nx = round(u + exp(i), -1), ny = round(u + exp(i), -1),
mu.SNR.x.hat, mu.SNR.y.hat,
sig.SNR.x, sig.SNR.y,n.sim, alpha)
powers[i,1] = round(u + exp(i), -1)
powers[i,2] = t.test.m
}
print(powers)
################################# END PART 1 ##########################
############################### PART 2: SNR_S #########################
######### SIGNAL-TO-NOISE RATIO FOR THE SMALLER-THE-BETTER CASE #######
#######################################################################
calc.pvalue.t <- function(nx, ny, sig.SNR.x, sig.SNR.y, mu.SNR.x.hat,
mu.SNR.y.hat, alpha){

x <- rnorm(nx, mu.x, sig.x)
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y <- rnorm(ny, mu.y, sig.y)

x.bar = mean(x)
x.sig.square = var(x)

y.bar = mean(y)
y.sig.square = var(y)

SNR.x.hat = (-10/log(10)) * log(x.sig.square + x.bar^2)
mu.SNR.x.hat = (-10/log(10)) * log(sig.x^2 + mu.x^2)
sig.SNR.x.hat = (-10/log(10))^2*((sig.x^2/(nx^2 * (sig.x^2 + mu.x^2)^2))
+((8 * mu.x^2 * sig.x^4)/(nx^2 * (sig.x^2 + mu.x^2)^2)))

SNR.y.hat = (-10/log(10)) * log(y.sig.square + y.bar^2)
mu.SNR.y.hat = (-10/log(10)) * log(sig.y^2 + mu.y^2)
sig.SNR.y.hat = (-10/log(10))^2*((sig.y^2/(ny^2 * (sig.y^2 + mu.y^2)^2))
+((8 * mu.y^2 * sig.y^4)/(ny^2 * (sig.y^2 + mu.y^2)^2)))

# n.SNR.x = nx
# n.SNR.y = ny
SNR.x.hat = rnorm(nx, mu.SNR.x.hat, sig.SNR.x.hat)
SNR.y.hat = rnorm(ny, mu.SNR.y.hat, sig.SNR.y.hat)

t_test = t.test(SNR.x.hat, SNR.y.hat, alternative = "two.sided",
paired = FALSE, conf.level = 1 - alpha)$p.value

if(t_test < alpha)(reject = 1) else(reject = 0)
return(reject)
}
calc.t<-function(nx, ny, mu.SNR.x.hat, mu.SNR.y.hat, sig.SNR.x, sig.SNR.y,
n.sim, alpha){
t_sum = 0
for (j in 1:n.sim){
t_temp = calc.pvalue.t(nx, ny, sig.SNR.x, sig.SNR.y, mu.SNR.x.hat,
mu.SNR.y.hat, alpha)
t_sum = t_temp + t_sum
}
p.value = t_sum/n.sim
return(p.value)
}
powers = matrix(NA,nrow = m, ncol = 2)
for (i in 1:m){
t.test.m = calc.t(nx = round(u + exp(i), -1), ny = round(u + exp(i), -1),
mu.SNR.x.hat, mu.SNR.y.hat, sig.SNR.x,
sig.SNR.y,n.sim, alpha)

powers[i,1] = round(u + exp(i), -1)
powers[i,2] = t.test.m
}
print(powers)
################################# END PART 2 ###########################

############################### PART 3: SNR_L ##########################
######### SIGNAL-TO-NOISE RATIO FOR THE LARGER-THE-BETTER CASE #########
########################################################################
calc.pvalue.t <- function(nx, ny, sig.SNR.x, sig.SNR.y, mu.SNR.x.hat,
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mu.SNR.y.hat, alpha){
x1 <- rnorm(nx, mu.x, sig.x)
y1 <- rnorm(ny, mu.y, sig.y)

x = 1/x1
y = 1/y1

x.bar = mean(x)
x.sig.square = var(x)

y.bar = mean(y)
y.sig.square = var(y)

SNR.x.hat = (-10/log(10)) * log(x.sig.square + x.bar^2)
mu.SNR.x.hat = (-10/log(10)) * log(sig.x^2 + mu.x^2)
sig.SNR.x.hat = (-10/log(10))^2*((sig.x^2/(nx^2 * (sig.x^2 + mu.x^2)^2))

+((8 * mu.x^2 * sig.x^4)/(nx^2 * (sig.x^2 + mu.x^2)^2)))

SNR.y.hat = (-10/log(10)) * log(y.sig.square + y.bar^2)
mu.SNR.y.hat = (-10/log(10)) * log(sig.y^2 + mu.y^2)
sig.SNR.y.hat = (-10/log(10))^2*((sig.y^2/(ny^2 * (sig.y^2 + mu.y^2)^2))
+((8 * mu.y^2 * sig.y^4)/(ny^2 * (sig.y^2 + mu.y^2)^2)))

# n.SNR.x = nx
# n.SNR.y = ny
SNR.x.hat = rnorm(nx, mu.SNR.x.hat, sig.SNR.x.hat)
SNR.y.hat = rnorm(ny, mu.SNR.y.hat, sig.SNR.y.hat)

t_test = t.test(SNR.x.hat, SNR.y.hat, alternative = "two.sided",
paired = FALSE, conf.level = 1- alpha)$p.value

if(t_test < alpha)(reject = 1) else(reject = 0)
return(reject)
}
calc.t<-function(nx, ny, mu.SNR.x.hat, mu.SNR.y.hat, sig.SNR.x, sig.SNR.y,
n.sim, alpha){
t_sum = 0
for (j in 1:n.sim){
t_temp = calc.pvalue.t(nx, ny, sig.SNR.x, sig.SNR.y, mu.SNR.x.hat, mu.SNR.
y.hat, alpha)
t_sum = t_temp + t_sum
}
p.value = t_sum/n.sim
return(p.value)
}
powers = matrix(NA,nrow = m, ncol = 2)
for (i in 1:m){
t.test.m = calc.t(nx = round(u + exp(i), -1), ny = round(u + exp(i), -1),
mu.SNR.x.hat, mu.SNR.y.hat, sig.SNR.x,
sig.SNR.y, n.sim, alpha)
powers[i,1] = round(u + exp(i), -1)
powers[i,2] = t.test.m
}
print(powers)
################################# END PART 3 #################################

77


	Title page
	Hoja de firmas
	Dedication
	Acknowledgement
	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1
	Introduction
	Background information
	Objectives
	General objective
	Specific objectives

	Subdivisions of the thesis


	Chapter 2
	Robust Design of Experiments: A Methodological Approach
	Double Orthogonal Array Design
	Combined Array Design
	Dual Response Surface Approach

	Mean Square Error Approach
	Desirability Function
	Individual desirability function
	Overall desirability function

	Desirability Function Based on Mean Square Error Criterion
	Individual desirability functions based on mean square error criterion

	Economic Impact of Designed Experiments
	Types of Quadratic Loss Functions

	Illustrative Examples
	Example 1: Robust design conducted on a chemical process
	Example 2: Economic impact of a robust design conducted on a chemical process
	Example 3: Robust design conducted on the elastic element of a force transducer

	Conclusions


	Chapter 3
	Signal-to-Noise Ratios: Statistical Tests for Pairwise Comparisons
	Introduction
	Brief Recall of the Taguchi Design
	Forms of Signal-to-noise Ratio (SNR)
	Signal-to-noise ratio for the nominal-the-best case
	Signal-to-noise ratio for the smaller-the-better case
	Signal-to-noise ratio for the larger-the-better case

	Asymptotic Distributions of the Estimates of Signal-to-noise Ratios
	Case of the estimate of the signal-to-noise ratio for the nominal-the-best case
	Case of the estimate of the signal-to-noise ratio for the smaller-the-better case
	Case of the estimate of the signal-to-noise ratio for the larger-the-better case

	Proposed Approach for Comparing Groups Using the SNR
	Proposed statistical test for pairwise comparisons of signal-to-noise ratios for the nominal-the-best case
	Proposed statistical test for pairwise comparisons of signal-to-noise ratios for the smaller-the-better case
	Proposed statistical test for pairwise comparisons of signal-to-noise ratios for the larger-the-better case

	Monte Carlo Study of Properties of Proposed Tests
	Procedure for Monte Carlo simulation

	Real examples
	Example 1 (Signal-to-noise ratio for the nominal-the-best case)
	Example 2 (Signal-to-noise ratio for the smaller-the-better case)
	Example 3 (Signal-to-noise for the larger-the-better case)

	Conclusions


	Chapter 4
	General conclusions

	References
	Appendix A
	Data
	Data for the chemical process problem
	Data for the elastic element problem
	Chemical process problem and values of SNRT"0362SNRT
	Chemical process problem and values of SNRS"0362SNRS
	Yields of rapeseed methyl ester
	Reciprocal values of Yields of rapeseed methyl ester and values of SNRL"0362SNRL


	Appendix B
	Calculations
	Estimated mean models: Chapter 2, Example 3
	Estimated variance models: Chapter 2, Example 3


	Appendix C
	Graphs
	Graphs for the chemical process problem
	Graphs for the elastic element of force transducer problem
	Distribution of SNR"0362SNR1-SNR"0362SNR2


	Appendix D
	R Codes
	R Code for MSE Analysis (Chemical process problem)
	R Code for Desirability Analysis (Chemical process problem)
	R Code for DF based on MSE criterion (Elastic element problem)
	R Code for simulating SNR and determining powers and test sizes



